高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于多核处理器的高速数码印花处理系统及方法
本发明公开了一种基于多核式处理器的高速数码印花处理系统,包括千兆以太网接口、I2C接口、StreamIO接口和多核处理器;多核处理器包括命令接收单元、命令处理单元、命令输出单元、数据接收单元、压缩数据缓存单元、数据解压单元、解压数据缓存单元和数据输出单元;同时本发明还公开了一种基于多核式处理器的高速数码印花处理方法。本发明以高性能多核处理器为核心,通过千兆以太网和StreamIO接口来完成打印数据从PC机到打印喷头的高速传输,通过千兆以太网和I2C接口实现打印命令的处理和转发,同时完成打印图像数据的解压缩和图像旋转等处理工作,大大提高了数码印花系统的工作效率。
浙江大学 2021-04-11
一种基于多传感器技术的葡萄水分胁迫诊断方法及系统
本发明公开了一种基于多传感器技术的葡萄水分胁迫诊断方法及系统,方法包括以下步骤:(1)采集建模葡萄样本的冠层覆盖率值、冠层温度特征值和冠层光合有效辐射值;(2)以冠层覆盖率值、冠层温度特征值和冠层光合有效辐射值为输入变量,冠层水分胁迫等级为输出变量建立检测模型;(3)按照步骤(1)的方法采集待测葡萄样本的冠层覆盖率值、冠层温度特征值和冠层光合有效辐射值,代入检测模型计算出待测葡萄样本的冠层水分胁迫等级。本发明通过引入多光谱成像技术、热红外成像技术以及多信息的数据融合技术,可实现葡萄水分胁迫程度的早期、快速、实时检测,提高检测精度。
浙江大学 2021-04-11
一种支持异质智能无线传感器在线开放规划的方法及系统
本发明公开了一种支持异质智能无线传感器在线开放规划的方法及系统,包括通过互联网在线注册 智能无线传感器元数据到 SOS 服务、构建并在线安装智能无线传感器规划插件、在线注册智能无线传 感器元数据到 SPS 服务、在线获取智能无线传感器任务规划参数描述、设置智能无线传感器任务规划参 数并在线验证智能无线传感器任务规划参数有效性、在线提交智能无线传感器任务规划请求、基于时空 位置在线获取智能无线传感器观测数据七步骤;本发明实现了异质智能无线传感器在
武汉大学 2021-04-14
一种 H 桥三电平有源电力滤波器的控制方法及系统
本发明公开了一种 H 桥三电平有源电力滤波器的控制方法及系 统。在进行直流母线电压相间平衡控制时,通过检测各相直线母线电 压与直流母线平均电压之间的偏差,确定基波负序电流的给定量,是 一种双闭环结构,因此系统的鲁棒性更高。与传统的基于负序电压注 入的方法相比,不会影响电流环的性能;与传统的基于零序电压注入 的方法相比,其相间平衡控制的能力更强。在进行负载电流谐波检测 时,在双 dq 轴坐标系下分别检测基波正序分量和基波负序分量,因此 谐波检测的精度更高。由于在负序 dq 轴坐标系下检测了基波负序电
华中科技大学 2021-04-14
基于柔性传感器的智能机器人“慧听”人机交互系统研发
目前第一代完整的呼吸音采集设备已研发完毕,完全实现呼吸活动的柔性无感持续智能监测评价和适应多场景下交互设计需求,提高医疗救护能力和应急救援能力,减轻医疗及养老行业人力与经济运营成本,创新引领社会与经济发展。 图1 技术路线 【技术优势】 (1) 基于驻极体薄膜的高灵敏度接触式压力传感器 目前用于呼吸音及心音监测的传感器大多采用较硬的基底,难以适应人体胸部曲线,不适合长期可穿戴使用。因此,本成果基于驻极体的自驱动压力传感器的自供能、响应速度快和灵敏度高等优势,设计了一种用于可穿戴式声音监测的高灵敏度柔性驻极体压力传感器,以实现对人体呼吸音与心音地长期、实时监测。 图2 部分成果展示 (2) 智能呼吸音监测分析预警平台 通过深入临床大规模收集心音和呼吸音样本、对病理性样本进行学习训练,对信号的模式识别进行研究匹配,采用人工神经网络、支持向量机两种识别模式,对病理性声音特征进行分析得出智能化参考病症分析。由于呼吸音信号的复杂性,同一种类型的呼吸音有不同人或是同一人在不同时间发出时,样本数据不完全相同,传统方法容错率与识别率极低。本成果将呼吸衰竭患者的呼吸音数据进行分类识别和特征标定,采用人工智能算法进行测试和集训,实现为大数据分析提供数据参考。 (3) 呼吸音智能监测预警系统的人机交互设计 通过分析多个智能呼吸音监测预警操作系统的使用场景、认知特点、输入和输出方式,归纳出它们在交互设计上的一般性的设计原则和设计缺陷。通过多学科的交叉,如人因功效学、设计语义学、设计美学、设计心理学等学科,进行了全面整体的交互设计研究。 图3 智能呼吸音诊断软件界面 图4 临床人员操作软件试用 【性能指标】
华中科技大学 2023-06-19
一种高速无位置传感器开关磁阻电机的控制方法及其系统
本发明公开了一种高速无位置传感器开关磁阻电机的控制方法及其系统,针对励磁相相电流的峰值时刻会与转子到达该励磁相定转子齿交叠点位置时刻之间存在偏移量的实际情况,对传统的相电流梯度法中将励磁相相电流峰值时刻直接作为该励磁相定转子齿交叠点位置时刻的方法加以修正,以得到该励磁相正确的定转子齿交叠点位置,从而更加准确地估算出开关磁阻电机励磁相的关断时刻和下一励磁相的开通时刻,实现更为精准地高速无位置传感器开关磁阻电机控制。
东南大学 2021-04-11
处理重金属工业污水的高效经济的新型电化学设备
近些年来,在我国经济高速发展的同时,环境污染问题也日益严重。涉及众多工业领域(如矿冶、机械制造、化工、电子、电镀、仪表等)的重金属废水(如含氟、氰、铬、汞等废水)是对环境污染最严重和对人类危害最大的工业废水。但由于不同的工业产生的重金属污染源多种多样,重金属废水的体系十分复杂,很难找到一种适用于所有重金属废水体系的处理方法;另外,目前最常用的重金属废水的化学处理法由于需要再次添加化学药剂(如混/絮凝剂、重金属沉淀剂(如钙盐、钡盐等)),不仅使处理成本大幅提高,同时存在对环境二次再污染的可能以及产生的含重金属污泥难以处理等诸多问题,因此,经济、高效且可持续的重金属废水的处理方法一直是我国这些年的研究热点。 和传统的化学处理法相比,应用电化学方法治理工业废水,具有无需添加氧化剂、絮凝剂等化学药品、设备体积小、占地面积小、操作简单灵活、排污量小等优点,不仅可用于处理无机污染物,也可用于处理有机污染物,特别是一些无法用生物降解的有毒有机物。另外,用电还原法处理一些重金属时还可回收废水中的金属。因此电化学方法越来越多的被用于重金属废水的处理中。用于重金属废水处理的电化学方法包括电解法(氧化或还原)、电气俘法、电凝聚法和电渗析法等。基本原理是在外电压的作用下,利用可溶性阳极(通常为铁或铝阳极)产生的阳离子在溶液中水解、聚合生成一系列既具有絮凝作用、又能有效吸附水中的有机污染物及其他胶体物质的聚合物。另外,在外加电压下,另一边的阴极(如铝阴极)可同时产生气体(如氢气、氧气、氯气等),气体的微小气泡又可起到气浮或杀菌的作用(如图1所示),更加提高废水的处理效果。
西安交通大学 2021-04-11
基于新型氢转换材料的便携式氢动力集成装备的开发
新型氢转换材料实现了简单、高效、即时即地制氢,结合氢氧燃料电池,可为国民经济和军事领域提供便携式电源的解决方案。关键产品技术已达国际先进水平,增强了我国在氢能制取和应用技术上的核心竞争力。
哈尔滨工业大学 2021-04-14
用于生物气净化分离的新型分子筛的研发及制备
SAPO-34分子筛由于其特殊的孔结构和量子效应,使其在选择性吸附与分离、能源开发、石油炼制等方面有着广泛的应用前景,尤其对于垃圾生成的生物气中甲烷与二氧化碳的分离有着优异的性能。南开大学与有关单位形成产学研合作,共同开发SAPO-34分子筛的制备及在生物气净化分离中的重要应用。目前已完成实验室第一阶段研发及小规模中试生产,并实现部分销售。本项目开发出一种在碱性条件下超声波老化,程序升温晶化法合成SAPO-34分子筛新方法。可以有效地将老化时间降低3/4,大大缩短工期,提高分子筛性能,将陶瓷膜分离
南开大学 2021-04-14
用于生物气净化分离的新型分子筛的研发及制备
SAPO-34 分子筛由于其特殊的孔结构和量子效应,使其在选择性吸附与分离、能源开发、石油炼制等方面有着广泛的应用前景,尤其对于垃圾生成的生物气中甲烷与二氧化碳的分离有着优异的性能。南开大学与有关单位形成产学研合作,共同开发 SAPO-34 分子筛的制备及在生物气净化分离中的重要应用。目前已完成实验室第一阶段研发及小规模中试生产,并实现部分销售。本项目开发出一种在碱性条件下超声波老化,程序升温晶化法合成 SAPO-34 分子筛新方法。可以有效地将老化时间降低 3/4,大大缩短工期,提高分子筛性能,将陶瓷膜分离与喷雾干燥相结合进行产品的干燥、成型,成功地解决SAPO-34 分子筛晶粒较小(纳米级),分离困难等问题。采用电解与离子交换膜结合法处理工业废水技术,做到变废为宝,排放零污染。 已与国际著名生物气净化分离设备供应商 XEBEC 公司形成合作,在不断的交流与完善中,制备的 SAPO-34 应用于 XEBEC 研制的专利产品生物气净化处理器中,分离效果得到国外客户的充分肯定。我们有信心将自主研发、生产的具有民族品牌的 SAPO-34 新型分子筛产品,切实应用于“低碳经济”环节链中,充分利用废物资源,变废为宝。
南开大学 2021-04-13
首页 上一页 1 2
  • ...
  • 80 81 82
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1