高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
仿生表面纳米涂覆提高PVDF微孔膜亲水性
上海交通大学 2021-04-13
高阻隔耐蒸煮食品防腐包装(膜)袋项目
项目背景:1.在我国食品行业中塑料膜作为包装材料的主要 形态之一被广泛应用。对于食品包装防止食品变质,提出了更高 的要求“如何减少防腐剂和脱氧剂的加入并有效增加食品的架货 期、保持食品的新鲜度,在不脱膜的情况下耐高温蒸煮”成为当 下包装行业研究的热点。2.传统的聚丙烯 PP 类材料虽然耐蒸煮, 但强度不高,柔韧性不足,传统的 PE 类材料在耐蒸煮性、透氧 阻隔性又处劣势;通过工艺技术的研发,寻找合适的配方生产膜 材料,尤其在高阻隔防腐方面改进复合膜结构,解决高端市场对 食品、药品等包装材料的需求。 所需技术需求简要描述:1.实现产品经 121℃和 135℃高温 蒸煮,蒸煮过后阻氧系数可达到 1 以下;2.包装材料耐压、耐拉 伸和耐褶皱,内容物两年内不变色。  对技术提供方的要求:具有相关研究成果,国内领先的院校 或科研单位。 
青岛正大环保科技有限公司 2021-09-02
膜法海水淡化关键设备能量回收装置
成果与项目的背景及主要用途: 近年来海水淡化技术的快速发展及其成本的大幅降低,使越来越多的国家和地区开始考虑利用淡化水作为第二水源,以缓解日益严峻的淡水危机。目前可用于工业规模的海水淡化方法反渗透技术的发展速度最快,成本的降幅也最大。其原因主要在于膜性能的不断提高和高效能量回收装置的广泛使用。能量回收装置作为反渗透海水淡化系统的必备设备之一,对大幅降低淡化系统的运行能耗,进而降低产水成本至关重要。正位移式能量回收装置近年来备受市场青睐,其产品市场占有率也呈逐年快速增长的发展趋势,淡化系统本体吨水电耗也由 80 年代的 8.0 kWh 降低到约 2.0kWh。 技术原理与工艺流程简介: 按照工作原理的不同,能量回收装置可分为水力透平式(或离心式)和正位移式两种类型。水力透平式运行时通常需要经过“压力能-轴功-压力能”两步转化过程,能量回收效率相对较低,为 50-75%。而正位移式则利用浓盐水直接增压进料海水的方式回收压力能,效率高达 90%-96%。此外,正位移式能量回收装置使用过程中还具有根据运行需要灵活调节淡化系统的产水回收率的特点。“阀控余压能量回收装置”采用正位移式工作原理,集成式水压缸和阀组相结合来实现反渗透海水淡化系统排放浓盐水余压能的回收利用。能量回收装置采用 PLC控制,易于与上位系统相耦合,控制精度和可调性都很好。 技术水平及专利与获奖情况: 该项目经国家海洋局鉴定验收(国海鉴字[2004]003 号),认为该成果达到国际先进水平。该技术已于 2004 年 7 月 7 日获准国家发明专利(授权公告号 CN1156334C)。 应用前景分析及效益预测: 能量回收装置由于具有较高的能量回收效率,已经逐渐成为海水淡化行业中研究和开发的热点,其产品市场占有率也呈逐年快速增长的发展趋势,近年来国内海水淡化工程大多采用美国 ERI 公司的 PX 能量回收装置。我国在 SWRO 能量回收技术方面的研发起步较晚,发展比较迟缓,装置形式较单一,大都局限于双液压缸功交换式,整体水平同国际先进技术还有很大的差距,但工业化发展及应用前景较好。随着我国淡水资源的日益缺乏,反渗透海水淡化工程必将大力发展,因而研究开发具有自主知识产权的能量回收装置具有深远的意义。阀控余压能量回收装置具有与国外同类产品相当的性能指标,其生产成本可比国外产品降低 1/3~1/2,是反渗透海水(或苦咸水)淡化系统必备的关键设备之一,市场前景广阔,经济效益巨大。 应用领域: 该装置可广泛应用于反渗透海水(或苦咸水)淡化系统和工业反渗透系统等水处理领域和有关化工工业(如合成氨工业)中需要回收液体压力能的场合。 合作方式及条件: 以技术合作的方式开发新型反渗透海水淡化能量回收装置系列产品。
天津大学 2021-04-11
一种中空纤维膜组件结构以及制造方法
本发明涉及一种中空纤维膜组件结构以及制造方法,属于膜分离设备技术领域。本发明所要解决的技术问题是现有的中空纤维膜组件在进行封装工作时,存在的膜丝分布、强度可靠性等问题。本发明开发一种能有效降低密封硬胶凝固过程中最高温度的柱式中空纤维膜组件的封装方法,对提高柱式中空纤维膜组件的良品率、延长膜组件使用寿命具有重要意义。
南京工业大学 2021-01-12
带数字标识螺旋器及膜性蜗管模型
XM-855A螺旋器及膜性蜗管模型(带数字标识)   XM-855A带数字标识螺旋器及膜性蜗管模型放大350倍,可拆分为5部件,显示螺旋器及膜性蜗管三壁的立体微细结构,模型的内侧端为骨性螺旋板,相当于螺旋缘处的断面,可见其中的骨质,表面肥厚的骨膜及穿通骨质的听神经纤维束,模型的另一端为螺旋韧带,内含多数血管,由侧面看可见前庭膜起于螺旋缘上面的骨膜,止于螺旋韧带的上方。将前庭膜取下观察,可见它由上面的间皮,中间的结缔组织及下面的上皮所成,膜性蜗管的外壁为螺旋韧带,内面附有单层立方上皮。 尺寸:放大350倍,47.5×18×32.5cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
螺旋器及膜性蜗管模型XM-855
XM-855螺旋器及膜性蜗管模型   功能特点: ■ XM-855螺旋器及膜性蜗管模型放大350倍,由3部件组成,显示螺旋器及膜性蜗管三壁的立体微细结构。 ■ 模型内侧端为骨性螺旋板,相当于螺旋缘外的断面,可见其中的骨质、表面肥厚的骨膜及穿通骨质的听神经纤维束。 ■ 另一端为螺旋韧带,内含多数血管。 ■ 前庭膜起于骨膜,止于螺旋韧带上方,由间皮、结缔组织和上皮组成。 ■ 膜性蜗管外壁为螺旋韧带,韧带下部向内凸起为螺旋凸,向内侧的尖锐突起为螺旋嵴,与膜性螺旋板相连,凸与嵴间的沟为外螺旋沟。 ■ 膜性蜗管下壁示骨性螺旋板骨膜肥厚形成螺旋缘,它突入膜性蜗管中,分别形成前庭唇和鼓室唇,二唇间有内螺旋沟。 ■ 鼓室唇的外方为膜性螺旋板的固有膜,它止于螺旋韧带嵴,此处有听弦(深红色)呈放射状进入螺旋韧带中,在近骨性螺旋板处示多处穿孔带,内有听神经穿过。 ■ 螺旋器位于外内螺旋沟之间,固有膜之上,由各种细胞构成,示螺旋器的内隧道由内外柱细胞围成。 ■ 内柱细胞(浅兰色)上端长方形头板与外柱细胞(深绿色)的凸形头端相嵌合,内柱细胞内侧有内指细胞(浅绿色)。 ■ 内指细胞内侧有边缘细胞(黄色),它内方变低为内螺旋沟上皮细胞,在内柱及边缘细胞之间内指细胞之上,有呈长颈瓶形的内毛细胞(白色),上端表面有纤毛。 ■ 外柱细胞(白色)外侧有外指细胞,外毛细胞位于其上,再向外为外螺旋沟上皮细胞。 ■ 盖膜(黄褐色)由细纤维和胶样基质所成。 ■ 前庭唇上有多数齿间细胞(兰色),它下部埋于螺旋缘结缔组织中,细胞上面合在一起形成盖膜。 ■ 耳蜗神经的树突和轴突穿过骨性螺旋板,再经穿孔带进入边缘和内指细胞间,一部终于内毛细胞上,大部纤维横越内隧道分布于外毛细胞上。 ■ 尺寸:放大350倍,47.5×18×32.5cm ■ 材质:玻璃钢材料
上海欣曼科教设备有限公司 2021-08-23
新一轮“双一流”建设将启动:新增高教资源向人口大省和中西部倾斜
围绕合理调整高校布局和数量,教育部将推动新增高等教育资源向人口大省和中西部地区倾斜。
新华社 2026-01-08
西南大学气相色谱三重四极杆质谱联用仪竞争性磋商
西南大学气相色谱三重四极杆质谱联用仪竞争性磋商
西南大学 2022-06-23
哈尔滨工程大学软包/固态电池电极极片制备设备采购及服务竞争性磋商
哈尔滨工程大学软包/固态电池电极极片制备设备采购及服务竞争性磋商
哈尔滨工程大学 2022-06-06
双辊薄带连铸生产项目
双辊铸轧薄带钢技术是将液态钢水直接注入由两个铸轧辊和侧封板构成的熔池内,并随铸轧辊的旋转轧出厚度为1-6mm薄带钢的一种工艺,其工艺的特点是液态金属在结晶凝固的同时承受压力加工和塑性变形,在极短的时间内完成从液态金属到固态薄带的全部过程。薄带钢铸轧工艺流程一直以来被定位于一种具有短流程优势,能获得同传统热轧板尺寸、板形、性能相当的替代产品并能节能降耗、减少生产成本的生产技术。大量研究表明,钢水的凝固速度要比常规板坯铸造中的高几个数量级,凝固组织得到明显细化,过饱和固溶度大大提高,成分偏析得到明显抑制,可以实现组织-织构-析出-性能的一体化控制。 双辊铸轧技术在生产难变形合金钢、耐大气腐蚀钢、高速钢、铁素体不锈钢、硅钢、高强高导铜合金等特殊性能材料上日益表现出某些常规生产工艺无法比拟的优势。双辊薄带连铸这一优势也决定了薄带铸轧技术产业化应该定位在生产高附加值、小批量、常规生产工艺无法驾驭的材料,高品质硅钢正是其中之一。因此,在产品开发上走出适合薄带连铸技术之路,是薄带铸轧技术走向产业化的基点。作为一种短流程、低能耗、投资省、成本低和绿色环保的新一代特殊钢生产工艺流程,投资降低80%,能耗降低7/8,CO2排放减少80%,吨钢成本减少40%。其亚快速凝固优势,可在开发具有高强度、长使用寿命钢材和功能材料(如硅钢、高强钢、高强高导铜合金等)中得到重要的应用。相关技术作为国家钢铁行业十二五规划、高品质特殊钢科技发展“十二五”专项规划、中国钢铁工业“十三五”重点技术发展方向等政府政策及行业规划文件中明确规定需要大力支持和突破的前沿和关键技术,符合我国钢铁产业科技发展的“节能、高效、绿色环保、循环经济发展”的总体战略目标,对先进钢铁材料的开发生产、突破传统硅钢生产流程弊端和我国钢铁企业的转型发展具有划时代的重要意义。
东北大学 2021-04-11
首页 上一页 1 2
  • ...
  • 69 70 71
  • ...
  • 151 152 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1