高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
极端环境下的柔性纳米电缆研究
一种Si-Mn-O玻璃态物质中控制Si-Mn形核、生长的动力学方法,实现了毫米级长度的Mn5Si3 @SiO2柔性纳米电缆(图1)。单根纳米线中,不论壳层厚度、还是电芯尺寸均表现出令人吃惊的均匀性(尺寸波动<4%),同时展现出极好的柔性与自支撑特性,不同弯曲程度下电阻几乎没有任何变化。统计电阻率数值为1.28 - 3.84×10-6 Ωm,最大耐受电流为1.22 - 3.54×107 A cm-2,分别为同等测试条件下同等尺寸银纳米线的10倍与1/3。这样一根导线在300℃的温度下,24小时的测试时间内,电阻率保持不变,证明其能够长时间在高温环境中正常工作。 在1 mol/L的HCl溶液中模拟强酸性环境,发现I-V特性几乎和空气环境中一致;在较长的一段时间内,原位监测导线在溶液中的电学特性变化,发现性能并无衰退。进一步,在溶液中外加矩形波电场,模拟复杂的外部干扰信号,导线仅由于电容效应发生十分微小的电阻变化。另外,同样考察了其耐氧化特性,放在30%双氧水溶液中20小时,电阻未发生明显变化。上述实验数据充分证明所设计的复合纳米电缆能够在高温、酸性及强氧化性等极端环境下正常工作,同时能够抵抗复杂的电场信号干扰。
中山大学 2021-04-13
新型导热电线、电缆塑料原料
通常塑料原料的导热性差,而作为电线、电缆原料,导热性不好会导致电、电缆中的热量集聚,特别是电线、电缆的负荷较大时,热量集聚可能使塑料层加快老化,甚至熔化而形成裸露的电线或电缆,为电线短路起火造成重大安全隐患。此新型电线电缆原料的导热性好,且不会影响其原有的绝缘性能,可以把电线中产生的热量快速传导出去,有效地消除了安全隐患。
四川大学 2021-04-14
一种电缆局部缺陷诊断方法
本发明公开了一种基于阻抗比同杆并架输电线路横联差动保护 的故障检测方法,包括当输电线路发生故障时,选出发生故障的故障 相别;根据选相结果对故障相进行电气量的数据测量,当故障相发生故障,测量的数据包括所有故障相的母线电压和所有故障相的第一回 线路和第二回线路的电流;根据测量的数据获得故障相别中每根导线 的测量阻抗;根据测量阻抗获取各故障相测量阻抗的阻抗比横差值; 当阻抗比横差值大于阻抗比横差判据整定值时判出发生同杆并架线路 内部故障;当第一回线的测量阻抗值大于第二回线的测量阻抗值时, 判
华中科技大学 2021-04-14
一种智能电缆在线监测系统
本实用新型涉及一种智能电缆在线监测系统,包括单芯电缆、一号光纤、二号光纤、光电转换装置, 光电转换装置包括:一号光电转换器、二号光电转换器、报警器。本实用新型将两条光纤分别安装于在 单芯电缆表皮外对称位置,其中一号光纤用于电缆温度测量,其中二号光纤用于电缆受外力测量,同时 在电缆隧道中每隔一定距离安装烟雾探测器。该系统可同时监测 4 条地铁电缆线路的状态信息,四条电 缆采用三角形敷设方式,本实用新型通过在地铁电缆外置光纤,实现了地铁电缆各点的温
武汉大学 2021-04-14
阿童木ATOMOS Lemo 到 XLR 外接电缆
产品详细介绍Lemo转平衡音频XLR外接电缆,支持幻像供电。
北京寰宇佳视技术有限责任公司 2021-08-23
矿用电缆负载燃烧试验机
产品详细介绍 JN-6699M煤矿用电缆燃烧试验机 产品概述:本装置根据MT386-1995煤炭行业标准的相应要求设计制造,适用于煤矿用阻燃电缆、阻燃电缆接头等阻燃性试验。 技术参数: 1、工作电压: AC 220V±10% 50HZ±5%; 2、燃烧箱尺寸:1100×525×900mm; 3、电控箱尺寸:1100×525×400mm; 4、负载电流:10~3000A。 5、喷灯高度可调,喷灯角度:90°; 6、测温范围:K型热电偶0~1200℃; 7、温控表显示范围:0~999.9 8、计时器范围:0~99.99S/M/H 9、容积:0.5m3,带排风装置; 10、重量:250公斤 11、使用环境温度:-15~45℃  相对湿度:(30~80)%RH;  
东莞市劲能仪器科技有限公司 2021-08-23
大型乙烯生产装置高温裂解炉结焦抑制技术及应用
我国乙烯装置的平均综合能耗比国际先进水平高出27%。裂解炉是乙烯生产的核心设备,其能耗占到整个乙烯装置能耗的50-60%。裂解反应炉管的结焦导致装置能耗增大、乙烯产量下降、炉管寿命大大缩短。本项目在上海市科委、市教委等科研项目的支持下,实现了大型乙烯裂解炉高温裂解结焦抑制技术的工业化应用及推广,填补了国内空白,整体技术水平达到国际先进。 项目创新性地提出了采用陶瓷梯度涂层来抑制裂解炉管内壁结焦、渗碳、氧化的新技术。发明了内表面带有特殊陶瓷层及复合氧化物纳米薄膜扩散障的裂解反应炉管制造技术,开发了工业化成套制造设备及陶瓷复合炉管的焊接技术。发明了可在裂解炉使用现场重复实施的抑制结焦在线预膜技术。自主设计、搭建了国内最大规模的高温裂解结焦抑制技术中试放大及抑制结焦效果评价系统。开发了适合在大型裂解炉高速紊流、管内复杂表面状态下在线制备陶瓷复合预膜层的工艺。优化了结焦抑制剂的添加工艺。实现了上述高温裂解结焦抑制技术的工业化应用及推广。 结焦抑制技术在大型乙烯裂解炉上的成功应用,解决了制约乙烯生产的瓶颈问题,实现了乙烯装置的长周期、高效、安全可靠运行,且可大幅度提升我国乙烯生产的技术水平。可推广应用于所有新建和在役乙烯装置、催化、焦化等石化装置、煤制油等煤化工装置等。 近 年累计为企业创造经济效益约6亿元。
华东理工大学 2021-02-01
高温压电振动能量回收器件和高温驱动器
传统PZT压电陶瓷应用广泛,但在居里温度较低,环境温度较高时,PZT陶瓷样品极易退极化。随着压电材料的应用范围的进一步拓展,一些极端条件对压电陶瓷的应用提出了新的挑战。北京大学工学院实验室利用高居里点的钪酸铋-钛酸铅压电陶瓷制备了基于d31模式和d33模式的应用于高温环境中的压电振动能量回收器,器件可以稳定地工作在150℃以上的高温环境中。高温下由于电畴被活化,器件的压电系数和相应的输出功率比室温时提高一倍以上。 与压电能量回收器不同的是,压电驱动器是一种利用压电效应,将电能转化为机械能实现纳米级驱动的器件,压电驱动器利用压电材料的准静态逆压电效应实现10微米至100微米的微小位移;同时,还可以利用压电陶瓷的高温谐振动效应制备高温压电马达。
北京大学 2021-02-01
高温压电振动能量回收器件和高温驱动器
传统PZT压电陶瓷应用广泛,但在居里温度较低,环境温度较高时,PZT陶瓷样品极易退极化。随着压电材料的应用范围的进一步拓展,一些极端条件对压电陶瓷的应用提出了新的挑战。北京大学工学院实验室利用高居里点的钪酸铋 - 钛酸铅压电陶瓷制备了基于 d31模式和d33模式的应用于高温环境中的压电振动能量回收器,器件可以稳定地工作在 150℃以上的高温环境中。高温下由于电畴被活化,器件的压电系数和相应的输出功率比室温时提高一倍以上。 与压电能量回收器不同的是,压电驱动器是一种利用压电效应,将电能转化为机械能实现纳米级驱动的器件,压电驱动器利用压电材料的准静态逆压电效应实现10微米至100微米的微小位移;同时,还可以利用压电陶瓷的高温谐振动效应制备高温压电马达。
北京大学 2021-04-13
双面高温超导涂层导体
基本概念:双面高温超导涂层导体是指用薄膜沉积的方法将微米级高温超导薄膜材料制备在厚度为几十到一百微米、宽度为几毫米到几厘米、长度为百米到几千米的Ni合金薄带的两个表面上,使其具有承载大电流能力的带状材料。 主要功能与应用领域:在液氮温区,双面高温超导涂层导体具有每厘米宽度上承载几百安培、甚至超过1000安培电流的能力,并且适合高场下的应用,因此,特别适合于大电流、强磁场下的应用。双面高温超导涂层导体可用于大电流电缆、大电流限流器、高功率变压器、小型化强场磁体、高功率发电机、电动机、电磁弹射器、电磁储能器的制作。 图1 双面高温超导涂层导体结构示意图 图2 双面高温超导涂层导体样品照片 特色及先进性:本团队研制的双面结构高温超导涂层导体具有承载电流水平高、制作成本低的特点。我们采用溶液涂覆平整化+离子束辅助沉积+中频反应磁控溅射+金属有机化学气相沉积+直流磁控溅射的技术路线完成各层薄膜的制备,由于采用发明的基带自加热结合两面同时沉积的方法,带材成本大幅降低,制备效率显著提高。 技术指标:短样Jc大于1.8MA/cm2,双面Ic超过500A/cm;长度>10米,Ic>300A/cm。 能为产业解决的关键问题和实施后可取得的效果:本成果目前主要应用于电力电子、国防军事、以及医疗领域,应用前景广阔。超导电力技术是从根本上为降低电力系统损耗、提高电力系统输送能力、有效限制故障短路电流、提高电网的安全性和改善电力系统动态特性开拓的新技术途径,给电力、能源、交通等有关的科技业带来革命性的发展;利用高性能的超导带材研制的电磁弹射器与蒸汽弹射器相比,体积、重量减少一半,弹射能增加了50%,弹射效率提高了10倍以上,满足了重型舰载机弹射的需要;高性能的超导带材使得高能脉冲武器(激光、微波、粒子束)及电磁炮等新概念武器的实战化成为可能;采用高温超导磁体制成的核磁共振成像仪,损耗低(比铜低1000倍)、灵敏度高、信噪比好,可以大大提高成像质量、降低成本,这种超导磁共振成像设备不仅可以用在大型的医疗机构中,也可以用在小型诊所,对于提高生命的质量意义重大。
电子科技大学 2021-04-10
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 688 689 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1