高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
铱配合物声敏剂及其制备方法和应用
本发明公开了铱配合物声敏剂及其制备方法和应用,属于抗肿瘤声敏剂药物技术领域,本发明的铱配合物声敏剂具有两种结构,分别命名为Ir‑1,Ir‑2,并提供了两种结构的铱配合物声敏剂的制备方法,本发明制备方法简单,原料易得,提纯便捷易操作,而且制备得到的铱配合物声敏剂具有优异的光物理性质,在小鼠乳腺瘤中展现出良好的治疗效果,有效抑制肿瘤的生长,具有优异的声动力治疗效果。
南京工业大学 2021-01-12
烟草新型保润剂的开发及产业化
以提高烟气中水分含量和降低烟气抽吸时的刺激性为指标,开发出了植物天 然提取物、多糖和盐类等多种新型保润剂,并运用于烟丝和再造烟叶,提高他们 的抽吸舒适度。上述技术与数家中烟工业公司合作,取得了良好的经济效益。
江南大学 2021-04-11
纺织品溶胶法无氟疏水整理剂及应用
目前,常见的纺织品疏水整理剂是含氟化合物,但含氟化合物价格昂贵,且对人体和生态环境有一定潜在的危害,尤其是 C8 类化合物已被确认是非常持久、生物积累和有毒的化学品。基于上述生态问题的考虑,本项目以溶胶-凝胶技术为手段,利用不含氟的长链硅烷试剂为添加剂,制得无氟疏水整理剂,该整理剂制备流程简单、设备要求低、应用工艺方便。同时整理剂中无含氮组分,有机物含量低,对废水 COD 影响小,达到生态环保的要求。 关键技术 (1)溶胶法制备无氟疏水整理剂技术; (2)基于溶胶法构筑超疏水纺织品技术; (3)纺织品亲水-疏水智能转化整理剂制备技术; (4)基于溶胶法耐久性超疏水纺织品整理剂制备技术。形成产品:纺织品无氟疏水整理剂。 知识产权及项目获奖情况 发表学术论文 5 篇,其中 SCI 论文 3 篇、CSCD 论文 2 篇。 公开发明专利 3 项,授权发明专利 1 项。 项目成熟度 较成熟 投资期望及应用情况 希望在纺织品助剂领域完成成果转化
江南大学 2021-04-13
多元耦合燃料(生物质/垃圾/高硫煤/高钠煤)发电关键设备防腐蚀感应熔焊与喷射复合涂层技术
成果介绍 成果名称:多元耦合燃料(生物质/垃圾/高硫煤/高钠煤)发电关键设备防腐蚀感应熔焊与喷射复合涂层技术 成果参与单位:江苏科环新材料有限公司、深圳能源环保股份有限公司、上海康恒环境股份有限公司 成果完成人:曲作鹏 知识产权情况:已申请专利87项,其中已授权发明专利17项,已授权实用新型专利27项 针对我国新能源与环保科技的重大战略,以解决垃圾与生物质发电锅炉高温防腐的实际需求为目标,本项目拟搭建应用于生物质与垃圾电站锅炉腐蚀防护的高频感应熔焊系统技术平台,在多元耦合燃料(生物质/垃圾/高硫煤/高钠煤)发电关键设备等受热面,开发完成镍基自熔合金高温涂层的技术体系,包括涂层材料与工艺,形成针对各类客户群体的系列解决方案。 随着近年来我国生物质和垃圾电站的迅猛发展,锅炉高温腐蚀问题日益突出,传统热喷涂技术由于易脱落、孔隙率高而应用受限,前期用得较普遍的Inconel625合金堆焊,也逐渐暴露出由稀释率高引起的高温防腐性能受限等问题。因此,开发新型高温防腐涂层技术已迫在眉睫。本项目在国家“十三五”重点研发计划等项目的支持下,经过十余年的集智攻关,于2019年初研发成功了高频感应熔焊高温腐蚀防护涂层技术,取得了系列创新性成果:首次在国内构建了生物质与垃圾电站锅炉高频感应熔焊系统技术平台,开发了在水冷壁管排表面制备耐镍基自熔合金高温薄涂层的技术体系,解决了城市垃圾与生物质电站锅炉高温腐蚀防护的技术瓶颈,打破了发达国家的技术封锁,形成了系列针对城市垃圾与生物质焚烧发电锅炉高温防腐的不同客户群体的解决方案。 我国西部特别是新疆地区的高硫高钠盐等高腐蚀性煤在燃烧过程中产生高浓度硫化物和钠盐等腐蚀性气体,造成水冷壁、过热器受热面的高温腐蚀、尾部烟道空气预热器低温腐蚀和受热面结焦等,特别是对燃烧器区域水冷壁管来说,如果没有防护涂层只能使用1—2年。传统的热喷涂,由于结合强度低孔隙率高,很少应用;普通高频感应熔焊虽然有效,但寿命难以超过5年;目前用得最多的是堆焊高温合金,但一般五年后就逐渐会发生涂层脱落和管壁减薄甚至爆管的现象,非计划停炉维修给企业造成了极大的经济负担。针对我国西北地区高硫高钠盐燃煤发电锅炉受热面对高温防腐的迫切需求,本项目拟开发感应熔焊与超音速喷射复合金属陶瓷涂层技术,从服役寿命、使用性能到性价比等方面都优于堆焊,以期彻底终结困扰我国燃煤行业多年的高腐蚀性气体对锅炉管道造成的严重腐蚀的防护难题。 创新点 1、首次在国内构建垃圾电站锅炉高频感应熔焊系统技术平台,自主开发了在水冷壁管排表面制备耐高温涂层的防腐技术体系,打破了发达国家对核心技术的封锁,突破了垃圾电站锅炉涂层防护系统核心技术瓶颈,形成了整体防腐的焚烧解决方案。 2、首次在国际上成功研发镍基自熔合金与金属陶瓷梯度复合涂层的防护技术,发明了基于重熔与喷射一体化的高温全域防腐全套技术,锅炉的高温腐蚀防护性能与服役寿命显著提升。 3、创新锅炉管道镶嵌陶瓷瓦的长效防护方法,发明了多项陶瓷高效低成本加工技术,填补了国际上硬脆材料特种加工技术的空白,突破了垃圾焚烧发电锅炉高频感应熔焊系统核心技术瓶颈。 市场前景 磨损与腐蚀是工业生产中的共性问题,全世界能源消耗的1/3-1/2在摩擦上,每年各种机械零件失效的一半以上由于磨损,每年因金属磨损、腐蚀造成的直接经济损失约达7万亿美元。垃圾焚烧电站锅炉受热面腐蚀问题,非常普遍,其腐蚀机理主要是所焚烧的垃圾中含有Cl,S以及碱金属等元素,造成Cl,S化合气体腐蚀和低熔点碱金属盐熔融腐蚀。据“十三五”规划,2020年焚烧处理能力占无害化处理比例50%,预计复合增长率不低于20%,垃圾焚烧规模呈快速增长态势,截至2018年,中国已运行的垃圾焚烧厂约为380座,处理能力约为37万吨/日,中国在建的垃圾焚烧厂约为200~250座,处理能力约为20~25万吨/日,中国垃圾处理“起步晚、起点低、发展快”,垃圾焚烧发展极快,2025年行业总规模估计超过100万吨/日,垃圾焚烧发电站超过2000家。余热锅炉高温防腐蚀涂层市场规模100亿以上,年增长率在20%以上,且防腐蚀涂层是消耗品,平均3—5年为一个周期。 另外,该技术不仅可以用于垃圾焚烧电厂,团队在农机刀片耐磨、水泥建材行业耐磨、机械重工表面硬化耐磨处理、钢轨耐磨涂层、高端球阀防腐、燃气轮机热障涂层、海上风电盐雾腐蚀、军工等领域的新产品、新技术也逐步成熟,走向规模化应用市场。 应用案例 深圳能源环保公司宝安老虎坑垃圾焚烧发电厂4号、5号、6号锅炉项目,工程地址:深圳市宝安区松岗镇老虎坑,业主单位:深能环保宝安垃圾焚烧发电厂。 获奖情况 2021年中国商业联合会科学技术奖 一等奖 2021年河北省科技技术奖 二等奖 2019年CCTV中国十大创业榜样 2019年第八届中国创新创业大赛 优秀企业奖 2019年第七届创业江苏科技创业大赛 三等奖 2019年“创客中国”江苏省中小企业创新大赛 优胜奖 2019年 淮安市第四届企业科技创新大赛 一等奖
华北电力大学 2023-07-13
二维钙钛矿纳米材料用于光催化降解黑臭水体
产品服务:焦化厂外排废水含高浓度有毒、难降解的氰化物、COD及氨氮称为焦化废水,是一种较难处理的有机废水,传统处理方法后无法达标。随着国家对环保问题的的日益重视以及国民环保意识的不断提高,废水的排放标准也变得更为严格。各国学者经过不断的探索研究出了一些新的焦化废水处理技术,如:电化学氧化技术、光催化氧化技术、膜技术等。这些技术对焦化废水中的污染物处理的较为彻底且不会产生二次污染,但是这些技术投资成本和运行成本较高并且很多仍处于理论研究和实验室研究阶段,较难实现大规模工业化应用。项目优势:本研究以铁基的纳米材料制备电极具有单个优点:高效降解焦化废水,高的使用寿命;低的处理成本。 市场概况:发展规划: 本团队计划创立集特色催化剂和配套设备为一体的纳米电催化工艺,以去除焦化废水中的难降解污染物为主要目标,同时实现脱色、除臭和净化水体的目标。经营目标是以上海环保公司为依托,对于他们在工程应用中的水处理需求,公司为其提供相应的环保咨询和先进的水处理产品,互利共赢。与此同时也要逐步提高产品品牌的市场认可度以及品牌效应。  商业模式:盈利模式: 前期以Fe基纳米电极与配套电催化设备的批量生产和销售为主,在产品推广到一定阶段后,以实际废水处理工程项目承包运营为主。 
同济大学 2021-04-10
模拟酶催化增强的纳米金暗场免疫组化新方法
纳米金由于具有独特的光学性质和表面生物分子偶联能力以及新发现的模拟酶功能,而在生物医学检测中有重要的应用价值。将特异性抗体偶联在金纳米颗粒上构建纳米探针,可以特异地标记肿瘤细胞,一方面可以利用其模拟酶特性进行显色和显微镜读片,用来有效替代传统的天然酶标记显色技术;另一方面,可以利用纳米金暗场成像的功能,通过暗场显微镜读片,从而省略了酶底物显色的步骤和成本,同时可以突破前一种技术只能定性判读的局限性,实现基于暗场光散射图像分析的定量检测,使得定量免疫组化检测成为可能。经过多年研发与攻关,我们已经成功实现针对恶性淋巴瘤的特异标记及双模式检测(模拟酶明场显色和暗场成像)技术建立,实现针对临床乳腺癌Her2检测的模拟酶增强暗场免疫组化定量判读,建立了定量判读图像分析软件,完成临床病例检测120例,检测灵敏性优于95%,特异性优于90%,对推动临床定量免疫组化技术及实现更精准的病理诊断具有重要意义。
东南大学 2021-04-10
催化吹脱-吸附法处理高浓度酚氨废水的应用研究
"本项目主要是针对高浓度氨氮废水处理过程中存在氨氮处理效果差,处理效率低、氨氮吹脱过程中能耗较大、粗氨气吸附提纯过程中高温对于吸附材料的影响和水蒸气对于吸附过程的影响、回收产品(氨水或硫酸铵)纯度不高等技术问题。 本项目以高浓酚氨废水为处理对象,采用“催化吹脱-树脂吸附”技术,通过“高效催化”、“低温吹脱”、“强化吸附”等技术手段,同步实现氨氮高效吹脱、分离、提纯,从而实现酚氨废水的深度脱氨,实现氨氮的强化去除、高效回收和提纯精制,减少后续生化单元处理规模和运行成本,同时保障了回收产品的纯度,实现资源回用,具有很好的市场推广价值。"
南京大学 2021-04-10
金属卟啉仿生催化氧化合成含氧有机化学品
含氧有机产品如己内酯、环氧环己烷均是重要的有机合成中间体。己内酯主要用于合成聚己内酯和与 其它酯类共聚或共混改性,其中聚己内酯具有独特的生物相容性、降解性以及良好的渗透性,在环保和医 用材料方面具有广泛的应用。环氧环己烷开环反应可制备大量中间体,是合成盐酸苯海索、农药三环锡、 克螨特、1,2-环己二醇、聚碳酸酯等的重要原料,广泛应用于医药、农药、固化剂、增塑剂等领域。由于 己内酯和环氧环己烷的合成存在生产的安全性和产品的稳定性等方面的难题,因此其合成技术难度大,目 前只有美、英、日等国的很少几家公司在生产,而我国主要依靠进口。 仿生催化氧化技术就是模拟血红素的活性中心结构,通过设计合成与酶结构相似的化合物,模拟与酶 催化反应相似的反应历程,实现温和条件下的催化氧化过程。本技术以氧气为氧化剂,以类酶结构的化合 物为催化剂,实现在温和条件下环己酮、环己烯高选择性氧化制得己内酯和环氧环己烷的仿生催化工艺。 本技术成果已申请国家发明专利,是我国拥有自主知识产权的制备己内酯和环氧环己烷新工艺,目前正处 在中试阶段。本技术成果填补了目前氧气氧化环己酮、环己烯制备己内酯和环氧环己烷的国内外技术空白。
中山大学 2021-04-10
二氧化碳电还原反应高效催化材料的研究
本研究设计并合成了无定型 Ag-Bi-S-O 修饰的 Bi 0 纳米颗粒,将其应用于二氧化碳电还原反应中 (图 1 ) 。 该研究工作首先通过溶剂热法制备了 AgBiS 2 纳米棒,并将其在空气中煅烧处理,得到了组成为 Ag 0.95 BiS 0.75 O 3.1 的双金属硫氧复合物纳米棒。在进一步电化学还原预处理后,该复合物被转化为无定型 Ag-Bi-S-O 修饰的 Bi 0 纳米颗粒。这种新型二氧化碳电还原催化剂在仅有 450 mV  的过电位下,实现了高达 94.3% 的甲酸法拉第效率和 12.52 m A/ cm 2 的甲酸部分电流密度。通过与 AgBiS 2 、 Bi 硫氧复合物及 Bi 2 S 3 参比样品进行对比,发现在电化学还原预处理过程中,金属硫化物中的 -2 价硫会转化为 H 2 S 并离开电极表面,只有金属硫氧复合物中被氧化为 +6 价的硫能保留在催化剂中。后续实验表明 ,这一部分硫能促进水的解离,而甲酸形成过程中所需的 H + 正是来自于 H 2 O 。因此,甲酸的生成被极大程度地促进。另一方面, Ag-Bi-S-O 修饰 Bi 0 纳米颗粒中的 Ag ,有利于电荷在电极中传递,提高了催化剂的电流密度。在过电位为 450 mV  时,更大的电流密度可以提高阴极附近的局域 pH ,而更大的局域 pH 能进一步提升硫促进水解离的效用,同时抑制氢析出反应的发生。因此,无定型 Ag-Bi-S-O 修饰的 Bi 0 纳米颗粒可以在极低的过电位下将二氧化碳高活性、高选择性地转化为甲酸。
北京大学 2021-04-11
模拟酶催化增强的纳米金暗场免疫组化新方法
纳米金由于具有独特的光学性质和表面生物分子偶联能力以及新发现的模拟酶功能,而在生物医学检测中有重要的应用价值。将特异性抗体偶联在金纳米颗粒上构建纳米探针,可以特异地标记肿瘤细胞,一方面可以利用其模拟酶特性进行显色和显微镜读片,用来有效替代传统的天然酶标记显色技术;另一方面,可以利用纳米金暗场成像的功能,通过暗场显微镜读片,从而省略了酶底物显色的步骤和成本,同时可以突破前一种技术只能定性判读的局限性,实现基于暗场光散射图像分析的定量检测,使得定量免疫组化检测成为可能。经过多年研发与攻关,我们已经成功实现针对恶性淋巴瘤的特异标记及双模式检测(模拟酶明场显色和暗场成像)技术建立,实现针对临床乳腺癌Her2检测的模拟酶增强暗场免疫组化定量判读,建立了定量判读图像分析软件,完成临床病例检测120例,检测灵敏性优于95%,特异性优于90%,对推动临床定量免疫组化技术及实现更精准的病理诊断具有重要意义。
东南大学 2021-04-13
首页 上一页 1 2
  • ...
  • 136 137 138
  • ...
  • 223 224 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1