高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
金碟图书馆管理系统
  金碟图书管理系统(Kingdisc Library Information System)是金碟公司专门针对中小学、大中专院校及企事业单位图书馆的自动化管理需要而开发的信息管理系统,已成为行业领先的软件品牌。该系统1998年开始开发,2001年上市,采用了国内通用的标准著录CNMARC条例,实现了国内图书目录数据的共享,能直接或自动生成和利用CNMARC数据;实现了根据《中图法第四版》自动分类和条形码打印等功能;符合教育部最新颁布的《教育管理信息化标准》规范。  系统运行为C/S+B/S模式,包括图书的采访、编目、流通、查询、期刊管理、系统管理、字典管理、WEB检索与发布等八个子系统,内含操作员权限管理、读者管理、著者管理、出版社管理、图书分类管理、书商管理、订单管理,附带在线帮助系统和多媒体功效,具有技术先进、功能完备、用户友好、可靠性强、安全性高、扩展性强、适用于多操作系统和经济实用等特点。系统同时支持Client/Server和Internet两种环境,能够适应图书馆自动化、网络化管理的需求。  《金碟图书馆管理系统》已成功在全国上千家中小学、大中专院校、医院及企事业单位得到应用。产品性能稳定,功能实用可靠,且具有良好的扩展性以及常用的IC卡、条形码等应用接口。  《金碟图书馆管理系统》有单机版、网络版和增强网络版三个版本,请根据实际需要选择。
珠海金碟数码科技有限公司 2021-08-23
台湾尚金凸轮分割器
产品详细介绍凸轮分割器由东莞市烨宇机械自动化有限公司专业代理销售凸轮分割器类别:   1、心轴型〈DS〉:输出轴为心轴;适合于间歇传送输送带。   2、凸缘法兰型:输出轴之外型为一凸缘法兰;适用于重负荷之回转盘固定及各式圆盘加工机械。   3、中空法兰型:外观尺寸及功能与凸缘法兰型类似,唯法兰处为一中空(H)之轴心;适合配电、配管之贯通过节省空间   4、合并顶升型:输出轴除了可做间歇圆周运动外,亦可在任意分割运动中做上下顶升运动及左右摇摆;经过简易搭配就能得到高效率、高精度之取放移送运动。   5、分离顶升型:输出轴只做固定上下之心轴运动和一个负责间歇分割运动之法兰所构成;视实际之应用可简单达到如压入、液体充填、组力等复杂运动。   6、大盘面型(DT):此机种可承受较大之径向、轴向压力,具有重负荷之特性;输出轴为盘面式设计,盘面螺孔定位,固定面积使平面度及稳固性更具坚实平稳;适用较大负荷之回转或圆盘驱动场合。   7、平行分度(P型):此机种普遍用于纸业印刷,具高速、精度又准确的优点。   东莞市烨宇机械自动化有限公司专业供应以上各型号凸轮分割器,以我司人员快速优质的服务,定成为你最佳的凸轮分割器供应商,热忱期待广大凸轮分割器用户来电咨询。郑重承诺以上产品质量保用两年。产品来源: 东莞市烨宇机械自动化有限公司 搜索关键词:凸轮分割器
东莞市烨宇机械自动化有限公司 2021-08-23
纳米级银和锑或银和铋掺杂的碲化铅的制备方法
本发明涉及一种碲化铅为基的热电材料及其制备方法。本发明中所述的纳米级银和锑或银和铋掺杂的碲化热铅电材料是指 AgnPbMnTe1+2n ,M 为 Sb 或 Bi, 0<n≤0.2。其制备方法有两种:1、在碲粉中加入还原剂使碲粉还原成碲离子,加热后加入铅的可溶性盐、锑或铋的可溶性盐和硝酸银的去离子水溶液,搅拌或超声波处理后,过滤、清洗,再室温真空烘干即可; 2、把碲粉加入到硝酸银、铅的氯化盐或硝酸盐和锑或铋的氯化盐或硝酸盐的去离子水溶液中,再加入还原剂,加热至 100-200oC 保温 1-20 小时后冷却至室温,将产物过滤洗涤后进行真空干燥处理即可。本发明所制备的新的碲化铅热电材料粒度细、纯度高,使用的原料便宜易得,工艺简单。
同济大学 2021-04-11
一种硒化锑薄膜太阳能电池的背表面处理方法
本发明属于薄膜太阳能电池制备领域,具体公开了一种硒化锑 薄膜太阳能电池的背表面处理方法,该方法是使用含有二硫化碳的液 体接触处理硒化锑薄膜太阳能电池中硒化锑薄膜层的表面,并以经处 理后的硒化锑薄膜层的表面作为硒化锑薄膜太阳能电池的背表面。本 发明通过对硒化锑薄膜太阳能电池中硒化锑薄膜层的背表面进行处理 改进,有效降低了硒化锑薄膜太阳能电池的背接触势垒,达到了提高 器件的填充因子的效果,进而提高了硒化锑薄膜太阳能电池的
华中科技大学 2021-04-14
铝电解槽输出端节能技术(HORR)
项目成果/简介: 简 介 一、项目背景 自20世纪80年代我国有色金属工业提出“优先发展铝工业”的战略发展方针以来,我国铝工业有了长足的发展,电解铝工业的发展更是突飞猛进。经过近30多年坚持不懈的努力,实现了跨越式发展。从引进“日轻”160kA预焙槽技术到自主开发280kA特大型铝电解槽的开发成功,使电解铝整体技术与装备水平进入世界先进行列。目前,500kA~600kA以上超大型电解槽已实现了工业规模化推广应用。40年来由于技术的进步,电解铝单位能耗下降1000kWh/tAl。 (1)高耗能仍是主要特点。尽管铝工业技术上取得了极大的进步,然而时至今日,铝电解的能量利用率仍然仅仅50%,大约有一半的能量都以热量形式散发在大气中(图1)。作为高耗能产业电解铝工业的节能减排仍将是今后相当一个时期的核心任务。  (2)电解铝是碳排放大户。进入21世纪以后,中国电解铝产量的增长速度明显加快,从2000年的279.41万吨增加至2020年3731.7万吨,连续多年成为世界第一原铝生产大国,同时电解铝的节能减排受到广泛关注。2020年,电解铝行业二氧化碳总排放量约为4.26亿吨,约占全社会二氧化净排放总量的5%。 (3)对供电质量要求高,不利于可再生能源电力发展。作为用电大户的铝冶炼企业,传统技术不具备调峰能力,这是由于其核心装备铝电解槽是在预设的热平衡条件下设计的,任何偏离预设热平衡的电力供给都可能导致严重过热或冻结。由于这一限制,现代铝电解槽的运行对供电质量要求相当苛刻(95%一级负荷),因此,作为用电大户的电解铝行业,基本没有调峰能力,对供电系统的适应性和灵活性小。 国际能源署发布的《电力系统转型现状2018》指出:电力系统灵活性已经成为全球优先发展方向。铝冶炼企业急需增加调峰能力,不仅可以适应未来新能源比例逐渐提升带来的电网供电波动,而且能主动调峰成为电力系统灵活电源点运行。 2020年12月16日,习近平主席在2020年中央经济工作会议上指出,要做好碳达峰、碳中和工作,要抓紧制定2030年前碳达峰行动方案。2021年3月15日,习近平总书记在中央财经委员会第九次会议中强调,“要把碳达峰、碳中和纳入生态文明建设总体布局”,指出“要构建清洁安全高效的能源体系,控制化石能源总量,着力提高利用效能,实施可再生能源替代行动,深化电力体制改革,构建以新能源为主体的新型电力系统。” “双碳目标”的提出,给电解铝行业提出了新的课题。开展大型铝电解槽能量平衡及余热回收技术的工业系列化应用,通过国内外技术的集成创新,形成一整套的生产工艺技术和先进的装备,大幅提高电解铝行业的能源利用率,对于实现电解铝行业“双碳目标”具有重大历史性意义。 二、技术简介及工作基础 郑州轻冶科技股份有限公司与郑州大学在15年研究成果积累的基础上,从2017年开始,在铝电解槽能量流优化及输出端节能(余热回收)领域联合国内外多家企业和科研单位,启动郑州市协同创新重大专项,目前“铝电解槽能量流优化与输出端节能(余热回收)技术及成套工业系统(HORRS系统)”已完成工业化试验,进入工业化示范运行阶段。 开创了电解铝工业输入端与输出端“双端节能”的先河,并为进一步工业应用奠定了基础。 1、主要内容 建立独立的铝电解能量流在线优化调节模型(HORR技术),实现控制变量与控制目标的“解耦”,为进一步实现电解铝“输入端节能”的极限优化工艺生产奠定了基础,进一步降低电能消耗; 成功研制了电解铝专用“高效集热装置”,通过国际合作开发成功国际领先的核心技术,并实现了关键设备的量产。在此基础上,进一步开发了铝冶炼过程散热回收系统(HORRS系统),实现大幅节能;铝电解槽能量利用率可由原来的不到50%提升到60%。 研制铝电解槽多参数传感器与快速检测分析系统,并开发了铝电解槽数字化基础上的能量平衡智能化系统; 采用能量流调节系统,为电解铝柔性生产提供了技术保障,初步实现了利用电解铝厂巨大电能容量协助当地电网实现蓄能调峰运行,调峰能力达到±20%。 2、当前工作进展 2019年起,在河南中孚实业股份有限公司4台400kA大型铝电解槽上,开展了“铝电解槽能量流优化及智能调控技术开发”协同创新重大专项工业示范应用。2021年3月11日,首台400kA电解槽余热已成功与巩义示城市供热网实现互联,回收利用热量约占电解槽总耗能8~10%,预计到2021年5月底,全部4台电解槽将整体投运。 三、经济及社会效益 (1)技术指标 本项目工业试验完成后,可实现电流效率≧94%;槽电压低于3.9V,折合吨铝节电800~1000kWh以上,电解铝能量利用率提升8~10% 实现电解槽调峰运行 该技术应用后,铝电解槽可实现蓄能调峰20%,有利支持新能源电力负荷的消纳,减小新能源电源增加后带来的峰谷差,为国家构建新型电力系统提供支撑。 实现电解铝厂与区域、城市融合发展 根据电解铝行业(火-电-铝)的特点,将回收余热资源供入城市供热系统用于冬季居民采暖;夏季并入配套发电厂会热系统,用于发电;也可用于根据产业园区布局,可为周边工业用户(如铝加工、氧化铝厂等)提供工业生产用热源或大规模工业制冷,实现余热资源的高效利用。 社会效益 按照未来推广应用2500万吨计算: 年可节电250亿kWh; 年可减排:2492.5万吨二氧化碳; 年可消纳新能源电量:675亿kWh。效益分析: (1)技术指标 本项目工业试验完成后,可实现电流效率≧94%;槽电压低于3.9V,折合吨铝节电800~1000kWh以上,电解铝能量利用率提升8~10% 实现电解槽调峰运行 该技术应用后,铝电解槽可实现蓄能调峰20%,有利支持新能源电力负荷的消纳,减小新能源电源增加后带来的峰谷差,为国家构建新型电力系统提供支撑。 实现电解铝厂与区域、城市融合发展 根据电解铝行业(火-电-铝)的特点,将回收余热资源供入城市供热系统用于冬季居民采暖;夏季并入配套发电厂会热系统,用于发电;也可用于根据产业园区布局,可为周边工业用户(如铝加工、氧化铝厂等)提供工业生产用热源或大规模工业制冷,实现余热资源的高效利用。 社会效益 按照未来推广应用2500万吨计算: 年可节电250亿kWh; 年可减排:2492.5万吨二氧化碳; 年可消纳新能源电量:675亿kWh。知识产权类型:发明专利知识产权编号:202010575520.0 202010575597.8 202021168838.9技术先进程度:达到国际领先水平成果获得方式:与国(境)外合作获得政府支持情况:省级以下计划/专项类别:郑州市协同创新重大专项获得经费:1000.00万元自筹资金:1000.00万元自筹资金来源:企业自筹
郑州大学 2021-04-11
全固态电池正极/电解质界面研究
硫化物固态电解质(LGPS)由于拥有与液态电解质接近的室温离子电导率,因此被视为下一代高能量密度电池的候选体系之一。但是,由于硫化物固态电解质较窄的电化学窗口(如Li10GeP2S12,1.7~2.1 V vs. Li/Li+),在与较高工作电压的LiCoO2氧化物正极(LCO)匹配时会发生一系列副反应,在界面处堆积低电导的氧化副产物(如Li3PS4, S, GeS2),同时LGPS和LCO电化学势的不匹配还将导致界面处产生空间电荷层(SCL),这些因素都将极大地增加固态电池的界面阻抗,进而使得固态电池的性能迅速衰减。目前,解决氧化物正极-硫化物固态电解质界面不匹配问题的主要途径为在氧化物正极表面包覆一层过渡层,用以缓冲正极和电解质界面的电势不匹配问题。 通过简单易行的固相包覆方法,首先将粒径为10 nm二氧化钛纳米颗粒均匀分散在钴酸锂表面,再通过高温烧结处理在钴酸锂表面形成一层约1.5纳米保护层。对照实验,FIB-TEM原位观察和XPS佐证表明通过高温原位反应钴酸锂表面将形成Li2CoTi3O8尖晶石相(LCTO)。具有稳定三维尖晶石结构的LCTO晶体在钴酸锂工作的电压区间依然能保持结构稳定,与钴酸锂基体之间具备较强的键合,同时具有高的锂离子扩散能力(Li+= 8.22×10-7 cm2 s−1),低电子电导(2.5×10-8 S cm-1)。这些性质将有助于在LCO和LGPS之间形成有效的电压降,保持界面稳定性的同时提供快速的离子迁移通道。理论计算表明,相较于LCO/LGPS界面,通过引入LCTO中间层产生的两个替代界面,即LCTO/LCO和LCTO/LGPS具有更强的热力学稳定性和更强的界面亲和力。
厦门大学 2021-02-01
全固态电池正极/电解质界面研究
项目成果/简介:硫化物固态电解质(LGPS)由于拥有与液态电解质接近的室温离子电导率,因此被视为下一代高能量密度电池的候选体系之一。但是,由于硫化物固态电解质较窄的电化学窗口(如Li10GeP2S12,1.7~2.1 V vs. Li/Li+),在与较高工作电压的LiCoO2氧化物正极(LCO)匹配时会发生一系列副反应,在界面处堆积低电导的氧化副产物(如Li3PS4, S, GeS2),同时LGPS和LCO电化学势的不匹配还将导致界面处产生空间电荷层(SCL),这些因素都将极大地增加固态电池的界面阻抗,进而使得固态电池的性能迅速衰减。目前,解决氧化物正极-硫化物固态电解质界面不匹配问题的主要途径为在氧化物正极表面包覆一层过渡层,用以缓冲正极和电解质界面的电势不匹配问题。 通过简单易行的固相包覆方法,首先将粒径为10 nm二氧化钛纳米颗粒均匀分散在钴酸锂表面,再通过高温烧结处理在钴酸锂表面形成一层约1.5纳米保护层。对照实验,FIB-TEM原位观察和XPS佐证表明通过高温原位反应钴酸锂表面将形成Li2CoTi3O8尖晶石相(LCTO)。具有稳定三维尖晶石结构的LCTO晶体在钴酸锂工作的电压区间依然能保持结构稳定,与钴酸锂基体之间具备较强的键合,同时具有高的锂离子扩散能力(Li+= 8.22×10-7 cm2 s−1),低电子电导(2.5×10-8 S cm-1)。这些性质将有助于在LCO和LGPS之间形成有效的电压降,保持界面稳定性的同时提供快速的离子迁移通道。理论计算表明,相较于LCO/LGPS界面,通过引入LCTO中间层产生的两个替代界面,即LCTO/LCO和LCTO/LGPS具有更强的热力学稳定性和更强的界面亲和力。
厦门大学 2021-04-10
铝电解槽输出端节能技术(HORR)
简  介 一、项目背景 自20世纪80年代我国有色金属工业提出“优先发展铝工业”的战略发展方针以来,我国铝工业有了长足的发展,电解铝工业的发展更是突飞猛进。经过近30多年坚持不懈的努力,实现了跨越式发展。从引进“日轻”160kA预焙槽技术到自主开发280kA特大型铝电解槽的开发成功,使电解铝整体技术与装备水平进入世界先进行列。目前,500kA~600kA以上超大型电解槽已实现了工业规模化推广应用。40年来由于技术的进步,电解铝单位能耗下降1000kWh/tAl。 (1)高耗能仍是主要特点。尽管铝工业技术上取得了极大的进步,然而时至今日,铝电解的能量利用率仍然仅仅50%,大约有一半的能量都以热量形式散发在大气中(图1)。作为高耗能产业电解铝工业的节能减排仍将是今后相当一个时期的核心任务。   (2)电解铝是碳排放大户。进入21世纪以后,中国电解铝产量的增长速度明显加快,从2000年的279.41万吨增加至2020年3731.7万吨,连续多年成为世界第一原铝生产大国,同时电解铝的节能减排受到广泛关注。2020年,电解铝行业二氧化碳总排放量约为4.26亿吨,约占全社会二氧化净排放总量的5%。 (3)对供电质量要求高,不利于可再生能源电力发展。作为用电大户的铝冶炼企业,传统技术不具备调峰能力,这是由于其核心装备铝电解槽是在预设的热平衡条件下设计的,任何偏离预设热平衡的电力供给都可能导致严重过热或冻结。由于这一限制,现代铝电解槽的运行对供电质量要求相当苛刻(95%一级负荷),因此,作为用电大户的电解铝行业,基本没有调峰能力,对供电系统的适应性和灵活性小。 国际能源署发布的《电力系统转型现状2018》指出:电力系统灵活性已经成为全球优先发展方向。铝冶炼企业急需增加调峰能力,不仅可以适应未来新能源比例逐渐提升带来的电网供电波动,而且能主动调峰成为电力系统灵活电源点运行。 2020年12月16日,习近平主席在2020年中央经济工作会议上指出,要做好碳达峰、碳中和工作,要抓紧制定2030年前碳达峰行动方案。2021年3月15日,习近平总书记在中央财经委员会第九次会议中强调,“要把碳达峰、碳中和纳入生态文明建设总体布局”,指出“要构建清洁安全高效的能源体系,控制化石能源总量,着力提高利用效能,实施可再生能源替代行动,深化电力体制改革,构建以新能源为主体的新型电力系统。” “双碳目标”的提出,给电解铝行业提出了新的课题。开展大型铝电解槽能量平衡及余热回收技术的工业系列化应用,通过国内外技术的集成创新,形成一整套的生产工艺技术和先进的装备,大幅提高电解铝行业的能源利用率,对于实现电解铝行业“双碳目标”具有重大历史性意义。 二、技术简介及工作基础 郑州轻冶科技股份有限公司与郑州大学在15年研究成果积累的基础上,从2017年开始,在铝电解槽能量流优化及输出端节能(余热回收)领域联合国内外多家企业和科研单位,启动郑州市协同创新重大专项,目前“铝电解槽能量流优化与输出端节能(余热回收)技术及成套工业系统(HORRS系统)”已完成工业化试验,进入工业化示范运行阶段。 开创了电解铝工业输入端与输出端“双端节能”的先河,并为进一步工业应用奠定了基础。 1、主要内容 建立独立的铝电解能量流在线优化调节模型(HORR技术),实现控制变量与控制目标的“解耦”,为进一步实现电解铝“输入端节能”的极限优化工艺生产奠定了基础,进一步降低电能消耗; 成功研制了电解铝专用“高效集热装置”,通过国际合作开发成功国际领先的核心技术,并实现了关键设备的量产。在此基础上,进一步开发了铝冶炼过程散热回收系统(HORRS系统),实现大幅节能;铝电解槽能量利用率可由原来的不到50%提升到60%。 研制铝电解槽多参数传感器与快速检测分析系统,并开发了铝电解槽数字化基础上的能量平衡智能化系统; 采用能量流调节系统,为电解铝柔性生产提供了技术保障,初步实现了利用电解铝厂巨大电能容量协助当地电网实现蓄能调峰运行,调峰能力达到±20%。 2、当前工作进展 2019年起,在河南中孚实业股份有限公司4台400kA大型铝电解槽上,开展了“铝电解槽能量流优化及智能调控技术开发”协同创新重大专项工业示范应用。2021年3月11日,首台400kA电解槽余热已成功与巩义示城市供热网实现互联,回收利用热量约占电解槽总耗能8~10%,预计到2021年5月底,全部4台电解槽将整体投运。 三、经济及社会效益 (1)技术指标 本项目工业试验完成后,可实现电流效率≧94%;槽电压低于3.9V,折合吨铝节电800~1000kWh以上,电解铝能量利用率提升8~10% 实现电解槽调峰运行 该技术应用后,铝电解槽可实现蓄能调峰20%,有利支持新能源电力负荷的消纳,减小新能源电源增加后带来的峰谷差,为国家构建新型电力系统提供支撑。 实现电解铝厂与区域、城市融合发展 根据电解铝行业(火-电-铝)的特点,将回收余热资源供入城市供热系统用于冬季居民采暖;夏季并入配套发电厂会热系统,用于发电;也可用于根据产业园区布局,可为周边工业用户(如铝加工、氧化铝厂等)提供工业生产用热源或大规模工业制冷,实现余热资源的高效利用。 社会效益 按照未来推广应用2500万吨计算: 年可节电250亿kWh; 年可减排:2492.5万吨二氧化碳; 年可消纳新能源电量:675亿kWh。
郑州大学 2021-05-10
连续铁碳微电解流化床设备
此连续铁碳微电解流化床设备的主要原理是将铁屑和碳粒等填充料,填装在主要包括一筒体的特定装置中,制成所谓的电解床。当污水通过时,铁成为阳极,碳成为阴极,产生各种微电化学反应,从而实现废水处理目的。
南京工业大学 2021-04-14
一种电解水技术及设备
1. 痛点问题 水电解制氢是一种较为方便的制取氢气的方法。在充满电解液的电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。在目前已有的技术中,由于电化学反应产生一定的热量,会导致电极和电解液温度升高。目前工业上主要通过调节电解液流速进行对流换热,电解槽端板上存在乳突状结构增强扰动,加强传热传质过程,从而使电解槽温度维持在一定范围内。即便如此,电解液出口和入口温度依然存在较大差距,出口的电解液温度需要进一步冷却才能重新被利用。 2. 解决方案 本发明的目的是提供一种电解槽流场板结构,解决了电解槽内部温度不均匀性,提高了能量转换效率。将扁平管状热管嵌入电解槽内部,与电解槽端板结合为一体,解决了电解槽端板温度分布不均、出口易发生电解液沸腾的问题,电解槽运行效率增加,并保证一定的安全性。 合作需求 (1)资源对接:有较小规模电解制氢需求的场景(如发电厂) (2)孵化资源:本技术可实现低能耗电极板结构设计,逐步将扩展到电解水制氢流程设计。目前在加工方面,需寻求可进行热管材料设计并同时掌握精密机械加工的团队。
清华大学 2022-01-04
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 100 101 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1