高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于天然纤维素制备微生物燃料电池的三维阳极材料研究
微生物燃料电池(MFCs)是利用微生物的新陈代谢氧化化学物质并释放电子,把化学能转化为电能的一种电化学装置。MFCs由于具有去污和产电双重功能,是一种“绿色”能源。其最具潜能的应用是污水处理,即利用微生物分解污水中的有机物,并将转化为可用的电能。且整处理过程不用曝气,可节省大量的耗能。目前,微生物燃料电池的发展和应用中最大的障碍是材料的成本和性能。 本研究利用低成本的天然木质纤维素为原料,采用直接碳化的方法来制备三维大孔碳材料作为微生物燃料电池的阳极材料,并取得突破性进展,。 相关系列研究结果2012年分别发表在Journal Material Chemistry, ChemSusChem 以及Energy & Environmental Science等国际权威杂志上。特别地,基于天然纤维制备的波纹层状三维碳阳极,阳极电流密度提高了10倍,达到了200 A m-2,该结果2012年已发表在能源环境领域顶级杂志Energy & Environmental Science上,影响因子9.61. 该研究成果制备的材料成本低,性能优异。该研究成果结合我们的阴极氧气还原催化剂的研究成果,以及后续的隔膜研究成果,将可微生物燃料电池的在污水处理中的规模化应用。
江西师范大学 2021-05-05
天然纤维素蒸汽闪爆改性及其在新型溶剂中溶解与绿色湿纺技术
Ø 项目针对目前粘胶纤维工业生产过程存在的污染严重问题,采用自行设计的高压热蒸汽闪爆(Steam Explosion,简称SE)技术,在超分子水平实现对天然木纤维素快速、安全可靠、低污染物理改性并固化其构象,同时利用环保、廉价的新型纤维素溶剂体系,实现温和条件下纤维素的溶解,通过真空脱泡、充氮、喷丝、凝固等工艺的优化获得了纤维素纤维的绿色湿纺技术,丝性能达到或超过粘胶丝。
北京理工大学 2021-01-12
高性能玄武岩纤维增强聚醚醚酮复合材料的规模化制备技术
、成果简介:(500字以内) 本成果是完成吉林省科学技术厅下达的吉林省科技发展计划项目“高性能玄武岩纤维增强聚醚醚酮复合材料的规模化制备技术(20096022)”科研任务所取得的。本成果的创造性体现在两个方面:即利用我国自主知识产权研制了复合专用聚醚醚酮树脂,通过选择玄武岩纤维、高温润滑剂及自制熔体粘度调节剂——聚芳醚酮液晶聚合物,研制出复合专用料;采用熔融挤出复合方法,制备了玄武岩纤维/聚醚醚酮复合材料并研究了其复合工艺,得到了综合性能优异的玄武岩纤维/聚醚醚酮复合材料。研制的玄武岩
吉林大学 2021-04-14
李学宝课题组在棉纤维发育的分子调控机制研究中取得新进展
近日,我校生命科学学院李学宝教授课题组在棉纤维发育的分子机制研究方面取得重要进展,研究成果在线发表于著名植物学期刊《The Plant Journal》(Li et al. 2018,DOI:10.1111/tpj.14108)。
华中师范大学 2021-02-01
基于高温水热强化的高含固污泥高级厌氧消化技术
针对我国污泥高含砂、高含固等特点,对我国低有机质污泥尤其是高含固(TS>10%)污泥高级厌氧消化技术路线领域开展研究,从厌氧消化的可行性、物质流特征、微生物种群及强化调控、热/碱强化水解预处理技术、污泥/餐厨协同消化技术等方面,特别是加强在污泥厌氧消化体系中物质流转化机制的研究工作,突破针对我国低有机质污泥提升厌氧降解率与产气率的关键技术研究与机理研究,为我国污泥高级厌氧消化研究提供支撑。 提出适用于我国低有机质污泥泥质特性的高温水热强化预处理技术,突破高温水热对污泥强化水解的作用机制与最佳反应条件,技术成果形成成套化装备,并在示范工程中得到应用转化与运行优化;突破高含固污泥高级厌氧消化的物质强化转化关键技术,对含固率、温控、搅拌等重要参数进行优化开发,技术成果在示范工程中得到应用转化与运行优化。1.目标及意义 1)提出适应于我国低有机质污泥泥质特征的污泥高温水热强化预处理技术,并与高含固污泥厌氧消化关键技术相耦合,形成基于高温水热强化的高含固污泥高级厌氧消化技术,开发具有完全自主知识产权的技术,并实现技术成果的在长沙污泥厌氧消化工程中的大规模产业化应用; 阐明在污泥厌氧消化新技术中有机质在固-液-气相变体系中的物质流特征,基于有机质的定向转化,进一步对污泥高级厌氧消化新技术进行优化开发,进一步提升甲烷产率和降解率,为污泥厌氧消化的效率提升提供技术支撑。基于对污泥厌氧消化过程的物质流和微生物特征的研究,在技术层面,从“易降解物质定向转化”、“难降解单元分质活化”和“微生物分相调控”三方面入手,开发强化物质转化的水热、生物酸化等预处理新技术,确定关键技术单元组成、关键技术参数和条件;在工艺层面,从强化固相溶解-液相高速甲烷化入手,开发高效厌氧消化工艺流程,开发适用于我国高含固污泥物料特点的厌氧消化技术与装备,提出可靠的搅拌和保温方案以及反应器构造等关键设计参数,在此基础上,形成高含固污泥热水解-厌氧消化集成技术,并进行工程示范;进一步提高污泥高含固厌氧消化工艺的物质转化效率与资源化利用水平。1)预期的经济效益  热水解预处理-高含固协同厌氧消化技术可有效提高污泥厌氧消化处理能力,增强污泥产期效率,降低污泥处理处置能耗。工程效益可望达到1亿元以上。2)预期的社会效益  热水解预处理-高含固协同厌氧消化技术可有效提高污泥厌氧消化处理能力,增强对污泥的处理处置能力,有效缓解污泥处理处置压力,进一步提高污泥高含固厌氧消化工艺的物质转化效率与资源化利用水平。
同济大学 2021-04-11
利用农业废弃物中木糖发酵生产高值γ氨基丁酸
农业废弃物中富含木糖,木糖以大分子的木聚糖的形式广泛存在于植物半纤维素中,可通过水解等农林业副产物如玉米芯等获得。如何利用廉价农业废弃物中木糖发酵生产高附加值产物具有重要前景。本实验室通过多年研究,挖掘出具有自主知识产权的可高效利用木糖生产γ氨基丁酸(GABA)的乳酸菌,L. buchneri WPZ001 可利用木糖或玉米芯水解液为碳源生长并高产 GABA。GABA 是中枢神经系统中一种抑制性神经递质,在保健食品及饲料添加剂中用途广泛,而目前其生产方法均为利用葡萄糖发酵生产。 本研究室研究发现:L. buchneri WPZ001 在以木糖为碳源的培养基中的生长和 GABA 合成情况均优于葡萄糖,在分别以木糖和玉米芯稀硫酸水解液为碳源的 1 L 规模的静置发酵中,48 h 的 GABA 产量分别可达 70.1 g/L 和 61.2 g/L,优化后,GABA 产量进一步提升到 313.1 g/L。本技术以富含木糖的农业废弃物为原料生产 GABA 的,不仅有助于降低 GABA 生产成本,还对再生资源的利用具有重要意义。 
江南大学 2021-04-11
一种便捷测定植株株高及侧枝长的简易装置
本实用新型提供了一种便捷测定植株株高及侧枝长的简易装置,包括卷尺,所述卷尺的一端与万向转动器的内部转动连接,所述万向转动器与卷尺相垂直,且卷尺靠近万向转动器一端的刻度为零,所述万向转动器的底端固定设置在手持固定夹上,所述手持固定夹包括手持部分以及夹子部分,且夹子部分上设置有防滑纹。本实用新型能一次性解决农作物植株株高、有效枝长的测量问题,不仅可以节省大量人力、物力,提高工作效率,而且能够快速、简便的测出植株株高、农作物主茎高、侧枝长。
青岛农业大学 2021-04-11
钠法高纯氢氧化镁制备成套技术与装备
氢氧化镁用途广泛,是新型绿色环保型无机阻燃剂,是绿色无机阻燃剂、烟气除硫首选脱 硫剂,同时广泛用于含酸、含重金属废水处理剂等,市场前景广阔。此外,高纯氢氧化镁是制 造工业氧化镁、活性氧化镁、电熔凝氧化镁、电工级氧化镁、特种氧化镁等特种材料的优质、 价廉的原料。 华东理工大学开发的高纯氢氧化镁全套工业技术与装备,采用氢氧化钠和氯化镁为原料, 通过控制氢氧化镁结晶形貌,降低过滤粒度母液夹带,降低干燥氢氧化镁能耗,提高产品品 质,氢氧化镁平均粒度控制大于30µm,过滤性能良好,产品干燥能耗低,氢氧化镁纯度达到 99%以上,通过煅烧得到氧化镁纯度达99.5%以上。同时工艺副产的氯化钠溶液浓度高 (浓度大 于25%) ,杂质含量低,可以作为氯碱电解制备氢氧化钠的原料,实现全过程零排放。
华东理工大学 2021-04-11
高效率高功率密度开关电源的软开关技术
随着技术的发展,对航空航天用开关电源的重量、体积、效率和可靠性提出了更高的要求。为了满足这要求,本项目旨在研究开关电源的软开关技术,以实现开关电源的高效率、高功率密度和高可靠性。 技术特征 1、研究了Buck变换器、Boost变换器、四管Buck-Boost变换器、全桥变换器、谐振变换器等常用开关电源拓扑的软开关技术。 2、提出了适用于第三代宽禁带器件的电力电子变换器的架构,即“预调节器+DCX-LLC谐振变换器”和“DCX-LLC谐振变换器+后调节器”的两级式结构开关电源,以大幅提升开关电源的效率和功率密度。
南京航空航天大学 2021-05-11
高场超导核磁共振波谱仪的关键技术转让
高校科技成果尽在科转云
武汉大学 2021-04-10
首页 上一页 1 2
  • ...
  • 85 86 87
  • ...
  • 112 113 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1