高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
高速
软袋装箱机器人
成果简介从时间角度分析, 产品在从原料到最终成品的整个生产过程中, 加工等工序过程在产品的生产周期内仅占 10%~20%的时间, 而搬运、 储存等物流过程占到整个生产周期的 80%~90%左右的时间。 从生产成本角度分析, 物料搬运费用约占总费用的 20%左右; 从安全角度分析, 有 40%左右的生产事故发生在物料搬运过程中, 且采用人工搬运产品时, 由于人为因素而造成的产品磕碰问题也直接影响到产品质量。 因此, 采用软袋装箱机器人代替人工搬运操作在现代企业物流管理中的地位日益凸显,
安徽工业大学
2021-04-14
大功率
高速
电磁弹射技术
该成果应用于多功能高速列车运行模拟试验台模型车驱动系统(旨在研究列车在雨雪、地震、气压增减等复杂环境下高速会车时的性能),采用了多相直线无刷直流电机驱动技术,即模型车电磁弹射技术,通过该技术,动子推动220kg模型车在50米范围内可达到112m/s(403km/h),并在9米内动子制动停车,电机功率达到28.6MW。整个电磁弹射系统包括东西两线,每条线在线路上均包括牵引段、制动段,在设备上包括脉冲发电机飞轮储能系统、多相直线无刷直流电机定子、动子以及安装定子和模型车运动轨道的支撑架,另外还包括动子回收、动子保持机构等,运行过程通过过程监控系统、视频监控系统进行实时监控记录。
西南交通大学
2016-06-27
一种基于球体投影公切线的多
相机
标定及参数优化方法
本发明公开了一种基于球体投影公切线的多相机标定及参数优化方法,具体步骤为:1、依据球体投影公切线的交点和球心投影点共线的原理,获得球心投影在相平面的坐标;2、结合球心投影,通过绝对二次曲线的像和球体投影之间的代数关系,求得相机的内外参数;3、使用椭圆形状参数表示球体的投影,并依此将投影曲线和其重投影之间的误差划分为相对独立的两部分,采用非线性优化方法对两部分偏差逐步优化获得相机最终的标定结果;4、将多相机的标定结果通过匹配方法统一到同一世界坐标系下,完成多相机的标定。本发明方法求解过程保留了参数几何意义,标定精度高,能简便高效的完成多相机的同时标定。
东南大学
2021-04-11
空间
相机
几何与时相分辨率检测方法及移动检测车
本发明涉及一种空间相机的几何分辨率检测方法,和一种空间相机时相分辨率检测方法,以及一种可用于空间相机几何和时相分辨率检测的移动检测车。本发明改变常规的地面固定靶标形式,将几何分辨率靶标与移动车辆结合,形成移动靶标,实现几何分辨率检测、不同时相移动定标功能,提高了光学相机任意方向几何分辨率的测试精度。车舱内可存放常规的地面固定靶标,可在应急条件快速布设,也可起到车体硬性靶标与常规软性靶标互补的作用。
北京大学
2021-02-01
低飞溅
高速
CO2焊技术
成果与项目的背景及主要用途:近年来我国钢材年消耗量迅速增加,焊接工 程量巨大,高效化焊接成为焊接技术发展的主流。MAG/CO2 焊由于其易于实现 自动化、抗锈低氢、成本低以及可进行全位置焊接等优点,成为高效化焊接方法 的重要选择。在我国,以 MAG/CO2 焊为主的气体保护焊工艺应用水平与发达国 家相比仍有较大差距,但发展较快。据统计:1999 年,我国的气体保护焊在整 个焊接工艺中所占的比例约为 10%,而日本和美国则达 70%左右;2002 年我国 此比例达到了约 17%,预计 2005 年可以达到 22~25%。在我国以 MAG/CO2焊为 主的气体保护焊在很大范围内正逐步取代焊条电弧焊,极具发展潜力。 MAG/CO2 气体保护焊短路过渡方式应用非常突出,国内外研究人员的研究 证明:采用 MAG/CO2 焊短路过渡形式,可以有效地防止高速焊接(1m/min 以上) 时形成的焊接缺陷。但由于 MAG/CO2 焊保护气体本身的物理性质所决定的,使 用活性 CO2 气体保护的焊接无论是采用细丝短路过渡方式,还是粗丝大电流的颗 粒过渡方式,都会造成较大的飞溅,在短路过渡方式中,焊缝成形差也是很大的 问题。著名的 STT 控制法利用对电流电压的快速控制,大大降低了短路过渡过程 的飞溅,改善了焊缝成形,但也只适用于电流较小的场合,用于高速焊接需要大 电流的场合时仍存在飞溅大等不足之处。 该技术主要解决纯 CO2 气体保护焊或低氩保护 MAG 焊时短路过渡的飞溅和 焊缝成形问题。 技术原理与工艺流程简介:该系统利用传感器采集信息,由单片机系统对焊 接过程的信息进行分析,控制逆变弧焊电源的输出。 关键问题在于实时控制的及时性。短路过渡存在大量快速的瞬态过程,需要 122天津大学科技成果选编 123 控制电路及时做出响应,有很大难度。美国林肯公司的 STT 焊机利用 IGBT 功率 开关并联限流电阻的方法,可以非常迅速地减小电流,对于防止飞溅非常有利。 但 IGBT 的工作条件非常严酷,限制了利用 IGBT 功率开关进行深入的研究,也使 其局限于较小电流的场合。受上述条件的制约,我们必须考虑其他的选择。 本技术找到了一种预判短路过程的方法,采用高速模拟电路为主并结合单片 机的中断处理方法加以控制;而对短路过渡相对稳定的过程,其控制则以单片机 为主,可以进行信息融合运算,甚至可以进行瞬态过程的预判运算。 技术水平及专利与获奖情况:国际先进,国家发明专利。 应用前景分析及效益预测:目前 CO2 焊的飞溅问题的解决主要采用:a.纯氩 或混合气保护,气体成本高;b.利用进口 STT 焊机,在低速焊、小电流范围应用, 焊机成本高;c.采用药芯焊丝,焊丝成本高,且只能焊接中厚板,不能短路过渡 焊。这些解决方法都并不令人十分满意,因而本技术有很好的的实际应用前景。 本技术可将飞溅率降为普通短路过渡的 1/2~1/3 以下,以一个年消耗焊丝 500~1000 吨的大中型企业计算,每年仅焊丝飞溅造成的损失就可减少数十万元, 尚不包括清理飞溅所投入的人力物力。而本技术在普通逆变焊机基础上加上 500~1000 元的一次性的材料成本投入,即可大幅度提高焊机的性能。 应用领域:机械、船舶、钢结构、汽车等众多行业。
天津大学
2021-04-11
铝箔(带)
高速
高精轧制控制技术
“高速高精轧制控制技术攻关”属国家“八五”技术攻关课题,解决某铝加工厂1350mm中、精两铝箔轧制机组存在的影响高速高精轧制的控制技术问题。 该项目于1996年通过技术鉴定,1997年获中国有色金属工业总公司科技进步二等奖。主要技术创新点一是采用了新型全密封张力传感器,实现张力直接闭环,提高了张力控制稳定性和精度,克服了原德国产传感器结构不合理、使用寿命低(仅半年)、必须在线标定的缺点,不仅寿命长使用方便,而且价格仅为同类进口传感器的1/10。精度误差小于1/1000,能有效保证高速轧制时张力稳定,板形良好,防止断带,提高厚度精度。第二个创新点是采用了两级计算机控制系统结构,改进控制策略,加强控制功能,提高了控制精度。该系统有以下特点: 采用模糊控制技术进行张力AGC控制。 采用智能化非线性变系数法,解决了直接张力控制投入时系统稳定性问题。 采用模糊卷径记忆法,提高了卷径计算精度。 采用最优控制技术,实现了质量最优、面积最优和重量最优。 采用压下和张力协调控制,提高了厚控系统的稳定性和控制精度。 采用“双重化改造作业法”,基本做到不停产改造调试,对生产的影响减至最小,提高经济效益。 采用“基于专家经验的工艺参数预设定和二次优化设定”模型,提高了设定精度。
北京科技大学
2021-04-11
面向
高速
移动场景的信道估计方法
随着我国高速铁路的不断发展,应用在高速环境下的移动通信系统日 渐成为研究的热点。从系统设计的角度来看,信道估计可以看作一个系统状态 估计问题,信道响应是系统中的状态变量。若将时域变化的信道看作是一个非线 性的动态系统,便可以利用扩展卡尔曼滤波器(EKF)对其状态变量求最小均方误 差(MMSE)估计。迭代检测译码(IDD)结构是一种基于Turbo译码原理设计的接收 机结构。在迭代接收机中,软入软出(SISO)的Turbo译码器与数据检测器之间 有一条反馈通道,使得数据检测器能够利用软译码器输出的后验对数似然比(也 称作“外信息”)完成多次迭代的信道均衡和解调。针对高速移动通信下快速时变信道估计的问题,我们提出一种基于EKF的 联合IDD信道估计方法(IDD-EKF) o采用自回归(AR)过程对信道建模,在导频 符号处采用最小二乘法(LS)估计,时域采用EKF插值,频域采用离散傅里叶变 换(DFT)插值。通过联合估计信道频域响应及信道的时域相关系数的方法追踪信 道的信道频率响应(CFR)。同时为了消除EKF误差传播的影响,采用迭代接收机结 构,利用Turbo译码器的码元纠错能力,通过外信息更新EKF观测方程中的加权矩 阵,从而辅助EKF更新,并进行迭代信道估计。EKF工作在三种不同的模式下,三种模式分别对应三种不同的构造加权矩 阵的方法。通过后验对数似然比构造的加权矩阵利用了 Turbo译码器的检错纠 错能力,使得构造的加权矩阵更加接近实际发送的符号,则EKF能够在更多的时频域位置上提供MMSE估计值。
重庆大学
2021-04-11
面向
高速
移动场景的信道估计方法
随着我国高速铁路的不断发展,应用在高速环境下的移动通信系统日 渐成为研究的热点。从系统设计的角度来看,信道估计可以看作一个系统状态 估计问题,信道响应是系统中的状态变量。若将时域变化的信道看作是一个非线 性的动态系统,便可以利用扩展卡尔曼滤波器(EKF)对其状态变量求最小均方误 差(MMSE)估计。迭代检测译码(IDD)结构是一种基于Turbo译码原理设计的接收 机结构。在迭代接收机中,软入软出(SISO)的Turbo译码器与数据检测器之间 有一条反馈通道,使得数据检测器能够利用软译码器输出的后验对数似然比(也 称作“外信息”)完成多次迭代的信道均衡和解调。 针对高速移动通信下快速时变信道估计的问题,我们提出一种基于EKF的 联合IDD信道估计方法(IDD-EKF) o采用自回归(AR)过程对信道建模,在导频 符号处采用最小二乘法(LS)估计,时域采用EKF插值,频域采用离散傅里叶变 换(DFT)插值。通过联合估计信道频域响应及信道的时域相关系数的方法追踪信 道的信道频率响应(CFR)。同时为了消除EKF误差传播的影响,采用迭代接收机结 构,利用Turbo译码器的码元纠错能力,通过外信息更新EKF观测方程中的加权矩 阵,从而辅助EKF更新,并进行迭代信道估计。 EKF工作在三种不同的模式下,三种模式分别对应三种不同的构造加权矩 阵的方法。通过后验对数似然比构造的加权矩阵利用了 Turbo译码器的检错纠 错能力,使得构造的加权矩阵更加接近实际发送的符号,则EKF能够在更多的时频域位置上提供MMSE估计值。 相对于传统的信道估计方法,在NMSE方面,IDD-EKF的信道估计方法在高速 环境下具有8dB的信噪比增益。而在BER方面,IDD-EKF在低速环境下相对于传 统算法信噪比增益为5dB,而高速环境下,其信噪比增益达到了将近lOdBo通 过仿真分析证明了这一设计的有效性。 该成果可以进一步推广到5G通信终端接收机以及拓展应用到飞行器之间 的高速通信中,提高通信性能。
重庆大学
2021-04-11
超
高速
流式成像分析仪
超高速流式成像分析仪是数字显微技术、微流体力学和图像处理技术的综合应用,用于自动分析颗粒或液体中的悬浮细胞。当样品流过检测区时,仪器会捕捉样品的影像,影像中的每个颗粒将被分析,生成关于颗粒的数量、尺寸、透明度、形态等方面的数据。也能用于实时分析颗粒的动态过程。形态分析软件还可用于分析特殊形态的颗粒,或者用于分离一些亚颗粒群体。该成像仪器利用高速重复频率的激光脉冲作为主动照明光源,利用时空频映射对成像区域进行频分扫描,该扫描完全利用光源本身的光谱特性实现,没有使用机械或电子的扫描装置,因此可以大大提升扫描成像的速度。目前实现了超高速成像仪的帧率可以达到1 百万帧/秒至 20 亿帧/秒的帧率,可以连续记录 10 万帧以上的影像数据,成像分辨率小于1 微米,可以连续观察非周期性的无规律的偶发事件。在应用方面,已经进行了超高速无标记流式细胞成像实验,可以实现对血液细胞当中的早期癌细胞(CTC)进行高精度高通量的筛查,成像通量超过 100 万细胞/秒,是目前常用的流式细胞仪的 1000 倍。另外,在高速气溶胶(PM2.5、PM10)成像机制上也进行了应用,可以实现气溶胶喷口速度在 10 米/秒的情况下进行颗粒成像,目前国际上还没有类似的仪器出现。因此,超高速激光扫描显微成像仪拥有传统检测仪器不具备的特殊功能,通过高速成像,获取传统仪器无法得到的信息,解决多个交叉领域的关键问题。
清华大学
2021-04-11
超
高速
流式成像分析仪
高速细胞检测一直是生物、医学领域非常有挑战性的工作,而流式细胞检测以其较大的 检测通量成为高速细胞检测的首选方案。本成果超高速流式成像分析仪灵活运用了高速光纤通信、微波光子技术及光信号处理技术,结合高速数据处理和生物医学技术,实现了对传统 细胞成像速度的巨大突破。与此同时,在获取了海量的细胞图像之后,根据具体应用的需求 进行快速数据压缩、人工智能图像分类处理、细胞特征提取等操作。通过细胞图像获取每一 个细胞的核心参数,从而将复杂的生物学现象(细胞)快速转换为直观可读的信息呈现形式, 为细胞特性的分析以及疾病的诊断提供第一手的,准确的资料。 创始团队基本来自于清华大学,拥有雄厚的研发能力,并与北京大学、武汉大学、东京 大学、加州大学洛杉矶分校、北京天坛医院实验室等知名高校及科研机构建立项目合作。同时获得天使轮投资,拥有发明专利两项,并获得第二十二届全国发明展览会—金奖,第十二届北京发明创新大赛—金奖,受到业内一致好评。 超高速流式成像分析仪是数字显微技术、微流体力学和图像处理技术的综合应用,用于自动分析颗粒或液体中的悬浮细胞。当样品流过检测区时,仪器会捕捉样品的影像,影像中的每个颗粒将被分析,生成关于颗粒的数量、尺寸、透明度、形态等方面的数据。也能用于实时分析颗粒的动态过程。形态分析软件还可用于分析特殊形态的颗粒,或者用于分离一些 亚颗粒群体。该成像仪器利用高速重复频率的激光脉冲作为主动照明光源,利用时空频映射 对成像区域进行频分扫描,该扫描完全利用光源本身的光谱特性实现,没有使用机械或电子 的扫描装置,因此可以大大提升扫描成像的速度。目前实现了超高速成像仪的帧率可以达到 1 百万帧/秒至 20 亿帧/秒的帧率,可以连续记录 10 万帧以上的影像数据,成像分辨率小于1 微米,可以连续观察非周期性的无规律的偶发事件。
清华大学
2021-05-08
首页
上一页
1
2
...
7
8
9
...
29
30
下一页
尾页
热搜推荐:
1
第62届高博会将于2024年11月重庆举办
2
2024年云上高博会产品征集
3
征集高校科技成果及大学生创新创业项目