高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高纯氧化铝坩埚刚玉坩埚
产品详细介绍  氧化铝陶瓷坩埚,刚玉陶瓷坩埚有:弧形氧化铝刚玉坩埚,方形氧化铝刚玉坩埚,长方形氧化铝陶瓷刚玉坩埚,圆柱形陶瓷刚玉坩埚,氧化铝刚玉管,等等各种异形氧化铝陶瓷坩埚,承接非标订做各种异形氧化铝刚玉陶瓷坩埚.欢迎联系!刚玉陶瓷坩埚系列:适用于各种实验室金属、非金属样品分析及熔料用。 坩锅系列——用于化验室及各种工业分析。     氧化铝坩埚刚玉瓷坩埚特点: 1、纯度高:Al2O3>99%,耐化学腐蚀性好 2、耐温性好,长期使用在1600℃,短期1800℃ 3、耐急冷急热性好,不易炸裂 4、注浆成型密度高 高纯氧化铝坩埚 刚玉坩埚理化指标 名          称 氧 化 铝 坩 埚     化   学   成   分 Al2O3 ≥99 R2O ≤0.2 Fe2O3 ≤0.1 SiO2 ≤0.2 体 积 密 度(g/cm2) ≥3.80 显 气 孔 率(%) <1 抗 弯 强 度(Mpa) >350 抗 压 强 度(Mpa) >12000 介 电 常 数 ∑(1MHz) 2 最 高 使 用 温 度(℃) 1800 规格有: 弧形坩埚:10毫升,15毫升,20毫升,30毫升,50毫升,100毫升,150毫升,200毫升,300毫升,500毫升,750毫升,1000毫升。 直形坩埚:直径30*30------160*160毫米 方形坩埚:65*65-------240*240毫米 备:可根据用户需求定制各种非标异型氧化铝坩埚!
北京中科奥博科技有限公司 2021-08-23
东南大学科研团队发现二茂铁基钙钛矿压电材料
在“东南大学十大科学与技术问题”启动培育基金的资助下,江苏省“分子铁电科学与应用”重点实验室研究团队在分子压电领域取得重要进展,发现了首例二茂铁基钙钛矿压电材料。 有机无机杂化钙钛矿(通式为ABX3)由于其在太阳能电池、光电探测器、电致发光、压电等高新科技领域中可观的发展潜力而备受专注。在杂化钙钛矿领域,因其优异的结构多样性和化学可调性,涌现出了各种结构新颖和性能卓越的压电和铁电材料。然而,迄今为止报道的杂化钙钛矿压电体中,A位的成分几乎都是纯有机胺离子。自1951年以来,二茂铁的问世掀起了有机金属化学的革命。基于二茂铁的有机金属化合物由于其性能的多样性和功能的丰富性在纳米医学,生物传感,催化和氧化还原等领域具有广阔的应用前景。经过多年发展,二茂铁基有机金属化合物在铁磁和铁弹等领域也取得了重大突破。然而,基于二茂铁基阳离子的钙钛矿压电材料此前仍是一片空白。 在“铁电化学”理论(针对铁电体的分子设计原理)的启发和指导下,我们发现以二茂铁基组分作为阳离子来代替有机胺是可行的,并构筑了一类新型的二茂铁基钙钛矿压电材料:[(二茂铁基甲基)三甲基铵]PbI3 ((FMTMA)PbI3), (FMTMA)PbBr2I和 (FMTMA)PbCl2I。得益于二茂铁基阳离子的稳定性,通过阴离子骨架中的卤素调控使材料的性能得到显著提升,获得了与LiNbO3相当的出色压电性能并兼具突出的半导体特性。基于该材料所制备的压电能量收集装置展现了其优异的机电能量转换性能。这项工作为钙钛矿压电材料的研究开辟了新的篇章,将激发对二茂铁基钙钛矿材料的进一步研究。
东南大学 2021-02-01
一种三氧化二铁/碳蛋黄-蛋壳纳米复合结构的制备方法
本发明公开了一种三氧化二铁/碳蛋黄-蛋壳纳米复合结构的制备方法,以三氧化二铁纳米颗粒为核心,通过控制正硅酸乙酯的量来控制包覆的二氧化硅的厚度,再通过热分解的方法在二氧化硅外面包覆一层碳,通过去除中间层的二氧化硅得到了三氧化二铁/碳蛋黄-蛋壳纳米复合结构。本发明通过简单的包覆过程合成了三氧化二铁/碳的蛋黄-蛋壳复合纳米结构,降低了成本,可大批量生产。另外,这种中空的三氧化二铁/碳蛋黄-蛋壳复合纳米结构有利于提高锂离子电池负极材料的性能。
浙江大学 2021-04-11
一种花状四氧化三铁纳米材料及其制备方法
本发明公开了一种花状四氧化三铁纳米材料及其制备方法,以七水合硫酸亚铁和氢氧化钾为原料,聚乙烯吡咯烷酮为结构导向剂剂,硝酸钠为氧化剂,先制备氢氧化亚铁深绿色胶体,然后经过氧化过程,在70~90°C水浴100~180min,即制得花状四氧化三铁纳米材料。本发明的材料分散性好,对磷和镉金属镉(II)的吸附性能好。在生物医学、电子工业、环境保护等领域具有潜在应用价值。
安徽建筑大学 2021-01-12
铁‑铜‑铝氧化物复合催化剂的制备方法、产品及应用
本发明公开了一种铁‑铜‑铝氧化物复合催化剂的制备方法,包括:(1)将铝盐加入到甲酸/甲酸铵的缓冲溶液中,铝盐完全溶解后,加入介孔SBA‑15,吸附完成后,烘干,焙烧得到铝负载的SBA‑15样品;(2)将铝负载的SBA‑15样品置于含有铁离子和铜离子溶液中,浸渍完成后,烘干,可选择的进行焙烧,得到铁‑铜‑铝氧化物复合催化剂。本发明还公开上述制备方法制备得到的催化剂和该催化剂的应用方法。本发明通过Al对介孔材料SBA‑15进行修饰,获得良好Al2O3纳米层,继续负载双金属组分Fe和Cu之后,活性组分继续保持高度分散的纳米层,在中性条件下,催化剂有着良好的降解去除,显示出催化剂极高的催化活性。
浙江大学 2021-04-13
“铁磁体/拓扑绝缘体异质结构界面存在磁性斯格明子的证据
磁性斯格明子是由拓扑保护的纳米涡旋磁结构,其微观的形成机制与非共线性作用(Dzyaloshinskii—Moriya Interaction)有关。该结构在物理上可以被看成一种受拓扑保护的磁准粒子,拥有很长的寿命,可被电流、热、光等条件所驱动。值得一提的是,其存在和消失的这两种状态可以被定义为磁存储中的“1”和“0”状态,使它成为一种颇具潜力的存储信息载体,在未来的自旋电子学和存储领域具有巨大的应用潜力。
南方科技大学 2021-04-14
一种提高Y2NiMnO6陶瓷多铁性能
青岛大学 2021-04-13
一种水平极化翻转的铁电忆阻器件及其制备方法
本发明公开一种水平极化翻转的铁电忆阻器件及其制备方法。该水平极化翻转的铁电忆阻器件包括柔性衬底;二维铁电功能层,形成在所述柔性衬底上;第一平面电极和第二平面电极,形成在所述二维铁电功能层两侧;将所述第二平面电极接地,当未在所述第一平面电极施加电压时,二维铁电功能层中极化方向无序,器件处于常态;当在所述第一平面电极施加正电压时,所述二维铁电功能层中的电畴发生水平极化翻转,极化方向由第一平面电极端朝向第二平面电极端,器件转变为低阻态;当在所述第一平面电极施加负电压时,铁电层中的电畴发生水平极化翻转,极化方向由第二平面电极端朝向第一平面电极端,器件转变为高阻态。
复旦大学 2021-01-12
一种具有高拉伸强度、高应力保持率手套用羧基丁腈胶乳及其制备方法
本发明涉及一种具有高拉伸强度、高应力保持率手套用羧基丁腈胶乳及其制备方法。所述胶乳由聚合物微粒子分散液A和聚合物微粒子分散液B按一定比例复合构成,具体为聚合物微粒子分散液A是1,3‑丁二烯、丙烯腈及甲基丙烯酸单体,在乳化剂、链转移剂、电解质及水溶性氧化剂存在下,通过乳液共聚合方法制备而成,经消泡、脱除残余单体、浓缩、调整pH后最终制备得到的;聚合物微粒子分散液B是1,3‑丁二烯、丙烯腈及衣康酸单体,在乳化剂、链转移剂、电解质及水溶性氧化剂存在下,通过乳液共聚合方法制备而成,经消泡、脱除残余单体、浓缩、调整pH后最终制备得到的;分散液B的聚合物微粒子中丙烯腈所占重量比大于分散液A的聚合物微粒子中丙烯腈所占重量比,聚合物微粒子分散液A和聚合物微粒子分散液B按所含的固体成分95:5至40:60的范围内配合形成高拉伸强度、高应力保持率手套用羧基丁腈胶乳。采用本发明制备的羧基丁腈胶乳生产的浸渍成型手套产品,拉伸强度≥30 MPa、应力保持率≥45%,且伸长率≥500%,同时具备高拉伸强度、高应力保持率及良好的柔软度。
南京工业大学 2021-01-12
高效高填充连续混炼技术及其关键装备
随着塑料、橡胶加工工业的发展,对于混炼设备的要求越来越高。双转子连续混炼技术是在密炼机基础上发展的一种新型高分子材料的混炼方法。其核心设备——双转子连续混炼机,除了具有密炼机优异的剪切混合和分布混合特性外,还具有双螺杆挤出机连续工作的特性,在节能和环保方面具有独特的优势。华东理工大学的相关课题组经过近十年的研究,开发出了具有自我知识产权的双转子连续混炼技术和双转子连续混炼造粒机,已经通过了教育部、江苏省科技厅、中国石化集团公司组织的技术鉴定,获国家机械工业联合会、江苏省科学技术进步奖。采用该技术开发的高浓缩炭黑母粒连续混炼造粒生产线和高压电缆屏蔽料连续混炼造粒生产线已经被成功地应用于PE80、PE100高压水管料专用高浓缩母粒生产、含量为50%的高浓缩高档碳黑母粒、导电纤维母粒和高压电缆屏蔽料的生产。生产线采用计算机集成控制,水下造粒等先进的技术手段,解决了相关产品生产过程中的碳黑排放污染环境的问题,实现了生产的连续化、自动化,单位产品能耗是常规方法的1/2~2/3,实现了相关产品的高效、节能、环保化生产。项目的创新点在于开发了一种独创的双转子连续混炼机转子构型和双转子连续混炼工艺,解决了高填充混合和导电高分子材料的混炼过程中对剪切混合和分布混合的综合要求高,开辟了一种新的高浓缩、高填充母料和导电高分子材料的生产方法和生产工艺。
华东理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 28 29 30
  • ...
  • 88 89 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1