低飞溅高速 CO2焊技术
成果与项目的背景及主要用途:近年来我国钢材年消耗量迅速增加,焊接工 程量巨大,高效化焊接成为焊接技术发展的主流。MAG/CO2 焊由于其易于实现 自动化、抗锈低氢、成本低以及可进行全位置焊接等优点,成为高效化焊接方法 的重要选择。在我国,以 MAG/CO2 焊为主的气体保护焊工艺应用水平与发达国 家相比仍有较大差距,但发展较快。据统计:1999 年,我国的气体保护焊在整 个焊接工艺中所占的比例约为 10%,而日本和美国则达 70%左右;2002 年我国 此比例达到了约 17%,预计 2005 年可以达到 22~25%。在我国以 MAG/CO2焊为 主的气体保护焊在很大范围内正逐步取代焊条电弧焊,极具发展潜力。 MAG/CO2 气体保护焊短路过渡方式应用非常突出,国内外研究人员的研究 证明:采用 MAG/CO2 焊短路过渡形式,可以有效地防止高速焊接(1m/min 以上) 时形成的焊接缺陷。但由于 MAG/CO2 焊保护气体本身的物理性质所决定的,使 用活性 CO2 气体保护的焊接无论是采用细丝短路过渡方式,还是粗丝大电流的颗 粒过渡方式,都会造成较大的飞溅,在短路过渡方式中,焊缝成形差也是很大的 问题。著名的 STT 控制法利用对电流电压的快速控制,大大降低了短路过渡过程 的飞溅,改善了焊缝成形,但也只适用于电流较小的场合,用于高速焊接需要大 电流的场合时仍存在飞溅大等不足之处。 该技术主要解决纯 CO2 气体保护焊或低氩保护 MAG 焊时短路过渡的飞溅和 焊缝成形问题。 技术原理与工艺流程简介:该系统利用传感器采集信息,由单片机系统对焊 接过程的信息进行分析,控制逆变弧焊电源的输出。 关键问题在于实时控制的及时性。短路过渡存在大量快速的瞬态过程,需要 122天津大学科技成果选编 123 控制电路及时做出响应,有很大难度。美国林肯公司的 STT 焊机利用 IGBT 功率 开关并联限流电阻的方法,可以非常迅速地减小电流,对于防止飞溅非常有利。 但 IGBT 的工作条件非常严酷,限制了利用 IGBT 功率开关进行深入的研究,也使 其局限于较小电流的场合。受上述条件的制约,我们必须考虑其他的选择。 本技术找到了一种预判短路过程的方法,采用高速模拟电路为主并结合单片 机的中断处理方法加以控制;而对短路过渡相对稳定的过程,其控制则以单片机 为主,可以进行信息融合运算,甚至可以进行瞬态过程的预判运算。 技术水平及专利与获奖情况:国际先进,国家发明专利。 应用前景分析及效益预测:目前 CO2 焊的飞溅问题的解决主要采用:a.纯氩 或混合气保护,气体成本高;b.利用进口 STT 焊机,在低速焊、小电流范围应用, 焊机成本高;c.采用药芯焊丝,焊丝成本高,且只能焊接中厚板,不能短路过渡 焊。这些解决方法都并不令人十分满意,因而本技术有很好的的实际应用前景。 本技术可将飞溅率降为普通短路过渡的 1/2~1/3 以下,以一个年消耗焊丝 500~1000 吨的大中型企业计算,每年仅焊丝飞溅造成的损失就可减少数十万元, 尚不包括清理飞溅所投入的人力物力。而本技术在普通逆变焊机基础上加上 500~1000 元的一次性的材料成本投入,即可大幅度提高焊机的性能。 应用领域:机械、船舶、钢结构、汽车等众多行业。
天津大学
2021-04-11