高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种保留已有路网数据并利用OSM数据进行路网扩展的方法
本发明公开了一种保留已有路网数据并利用OSM数据进行路网扩展的方法,该方法能够让用户自定义需要扩展的路网区域,并快速地将用户需要扩展的路网范围连接到原有网络中,同时保留了原路网的数据信息,最终得到利用OSM数据进行扩展后的路网数据文件。在实际工作中,用户会遇到需要在已有路网基础上扩大研究范围的情况,本发明由用户自定义选择需要扩展的路网范围,自动从OSM数据中提取扩展路网信息后与已有路网数据进行合并,保留了原有用户已经维护好的路网信息,节省了人工逐条添加路段和对扩展后路网进行重复校核的人力和时间成本,同时提高了扩展路网的准确性。
东南大学 2021-04-11
新型纳米材料干扰β-淀粉样蛋白寡聚体形成并促进小胶质细胞介导清除
南开大学刘阳研究员与天津医科大学康春生教授合作在国际知名学术期刊NanoLetters(DOI:10.1021/acs.nanolett.8b03644)上发表文章,提出了一种新型的纳米复合材料(NC-KLVFF),可有效清除Aβ毒性寡聚体,并减轻Aβ诱导的AD小鼠的神经毒性。该纳米复合材料为表面集成有Aβ捕捉肽(KLVFF)的小粒径纳米颗粒(图2b,14±4nm)。这种纳米复合材料将KLVFF通过原位聚合交联在血清蛋白质分子表面(图2a),与Aβ共培养可显著改变Aβ寡聚体的形貌,进而形成Aβ/NC-KLVFF纳米团簇而不是Aβ寡聚体。随着病理性Aβ寡聚体的减少,纳米复合材料减轻了Aβ诱导的神经元损伤,并恢复了脑内小胶质细胞吞噬Aβ的能力,最终保护了海马神经元免受凋亡。研究人员考察了NC-KLVFF在减轻神经毒性和促进小胶质细胞清除方面的作用。实验结果表明NC-KLVFF通过与Aβ作用形成纳米团簇体,显著减轻了Aβ对神经元细胞膜的黏附,进而减小了对神经元的损伤(图3a,b)。在小胶质细胞对Aβ的吞噬实验中,也观察到Aβ/NC-KLVFF纳米团簇体展现出更易被内在化的特点(图3c,e)。
南开大学 2021-04-10
吸收并释放二氧化碳的气候友好型聚氨酯发泡剂
传统的聚氨酯发泡剂存在消耗臭氧和导致全球变暖等问题,承受着巨大的环保压力。如目前使用的氢氟碳化合物地球变暖潜值是二氧化碳(CO2)的800多倍,长远来看其使用必将受到限制。本项目(专利申请号:201410182221.5)在国家自然科学基金的支持下,开发了疏水改性的聚乙烯亚胺材料,该材料能够可逆吸收二氧化碳,并在聚氨酯泡沫成型的过程中释放出二氧化碳来参与聚氨酯泡沫的形成。这种新型的发泡剂不消耗臭氧、不产生额外的温室效应、不燃,和聚氨酯泡沫的原料能均匀混合,可用于各种聚氨酯泡沫。 利用该发泡剂我们已制备出聚氨酯硬泡材料,其力学强度和密度均能达到现有泡沫的要求。目前正在研发可应用的聚氨酯软硬泡产品。该项目具有二氧化碳减排效应,将会受到国家产业政策的支持。
四川大学 2015-06-10
一类噁唑并香豆素衍生物在农药方面的应用
本发明(名称为:一类噁唑并香豆素衍生物在农药方面的应用)涉及一类噁唑并香豆素衍生物及其制备方法,以及在抑菌、除草方面的用途。这类噁唑并香豆素衍生物均可通过4‑甲基‑6‑氨基‑7‑羟基香豆素与不同羧酸缩合制备,这些化合物可作为杀菌剂防治番茄灰霉病菌、柑橘炭疽病菌、白菜黑斑病菌、小麦全蚀病菌、棉花枯萎病菌,也可作为除草剂防治杂草马唐、灰藜。
青岛农业大学 2021-04-13
为新药研发提供利器:复旦复杂体系多尺度研究院团队发表超越谷歌“AlphaFold2”的蛋白质侧链预测成果
在目前阿尔法折叠算法开源的情况下,复旦团队的算法可以为任何蛋白质结构预测工作提供比阿尔法折叠更准确的侧链模型,从而为蛋白质结构研究,尤其是基于蛋白结构的新药设计工作提供了利器。
复旦大学 2021-12-17
一种对于二氧化碳 (CO2) 还原反应具有高选择性和活性的电催化剂
开发出了一种基于钴酞菁(CoPc)分子的高性能CO 2 还原电催化剂材料。在纳米尺度上,CoPc分子通过强π-π相互作用均匀的附着在碳纳米管(CNT)外壁上,形成CoPc/CNT复合物。与CoPc分子相比,该复合物电催化剂显著提高了CO 2 还原为一氧化碳(CO,一种在大规模化工产品制造中广泛应用的重要工业气体)反应的电流密度并有效改善了催化剂的选择性以及稳定性。在0.1 M 碳酸氢钾 (KHCO 3 ) 电解质中进行电催化CO 2 还原时,CoPc/CNT复合催化剂能够在0.52 V的过电势下稳定地维持10mA cm -2 左右电流密度10小时以上,并且CO的法拉第效率始终保持在90%以上。在分子水平上,通过在CoPc分子上引入氰基(CN),得到的CoPc-CN/CNT复合物电催化剂在0.1M KHCO 3 水相电解质中催化CO 2 还原为CO的法拉第效率在研究的电势区间内都达到95%以上。该CoPc-CN/CNT电催化剂能够在0.52V过电势下进一步提高CO 2 还原的电流密度至15mAcm -2 ,转化频率(Turnover Frequency, TOF)为4.1s -1 。该复合催化剂在电催化CO 2 还原中能够实现较高的电极电流密度(可媲美当前最好的非均相电催化剂),同时维持单个催化位点的高活性(可媲美当前最好的分子体系电催化剂)。该项研究表明这种分子/纳米碳复合材料是一类非常诱人的能够转换过剩排放CO 2 为可再生燃料的电催化剂材料。
南方科技大学 2021-04-13
一种多磺酸根离子液体催化制备查耳酮及衍生物的方法
(专利号:201310086922.4) 简介:本发明提供一种多磺酸根离子液体催化制备查耳酮及衍生物的方法,属于有机化学合成技术领域。本发明方法的缩合反应中原料醛与酮的摩尔比为1:1,多磺酸根离子液体催化剂的摩尔量是所用酮或醛的8-10%,反应温度为120-140℃,反应时间为8-20h,反应压力为1个大气压,反应后静置分层,分出的上层产物重结晶后得到产品查耳酮及衍生物。分出的下层含有多磺酸根离子液体催化剂在110℃真空干燥处理2h后可以
安徽工业大学 2021-01-12
吉林大学聚醚醚酮特种纤维制备技术亮相首届高等学校科技创新大会
5月21-23日,首届高等学校科技创新大会于第56届中国高等教育博览会期间在山东青岛举办。大会以“激活科技创新 打造齐鲁样板”为主题,由教育部科学技术与信息化司指导,中国高等教育学会主办,云上高博会工作组、中国教育在线承办。
吉林大学 2021-05-27
医药中间体 3,4,5-三甲氧基苯甲醛(TMB)的制备
3,4,5-三甲氧基苯甲醛(简称 TMB),外观为白色至浅黄色结晶,易溶于乙醇、乙酸乙酯和氯仿等有机溶剂中。是一种重要的医药中间体,是合成磺胺类增效剂三甲氧基苄胺嘧啶(TMP)的重要中间体。 目前市场销售量每年数千吨,单价在 15 万元/吨左右。目前 TMB 的合成方法主要有三条,一是以五倍子酸为原料,经甲基化、酯化、还原等步骤合成;二是以香草醛为原料,经溴代、甲氧基化、甲基化等步骤合成;三是以对羟基苯甲醛为原料,经溴代、甲氧基化、甲基化等步骤合成。以对羟基苯甲醛为原料是目前工业化的主要途径,但该方法中也存在致命的不足,如甲氧基化步骤中,以 DMF 作溶剂,甲基化原料为甲醇钠/甲醇溶液,但 DMF 在在碱性中容易分解,产生二甲胺,造成 DMF 回收困难,使用成本过高;甲基化使用剧毒的硫酸二甲酯,对操作人员和环境产生强烈的影响。虽然文献中也报道了避免使用 DMF 为溶剂的工艺,但还存在操作复杂、反应体系压力过大等缺陷。甲基化步骤中尚没有合适的硫酸二甲酯替代物。 本项目旨在优化对羟基苯甲醛的工艺,主要改进点是甲氧基化和甲基化方法,甲氧基化以价格便宜且广泛使用的碳酸二甲酯(DMC)作为辅助催化剂,甲醇/甲醇钠为溶剂和甲氧基化原料,避免使用容易分解的 DMF,且反应后产物无需进行酸化;甲基化以价格便宜且毒性小的氯甲烷气体代替剧毒的硫酸二甲酯。该项目目前已经完成实验室的小试工艺,通过优化的实验条件,以三步总收率约 70%合成 TMB,正在进行中试放大。 
南开大学 2021-04-13
超快扫描隧道显微镜并捕捉到极化子动力学行为
成功研制出国内首台超快扫描隧道显微镜,实现飞秒级时间分辨和原子级空间分辨,并捕捉到金属氧化物表面单个极化子的非平衡动力学行为。扫描隧道显微镜(Scanning Tunneling Microscope,STM)由于其隧穿电流具有高度的局域性,空间分辨率可以达到原子量级。然而受电流放大器带宽的局限,其时间分辨一般只能达到微秒量级(10-6 s),而很多微观动力学过程往往发生在皮秒(10-12 s)和飞秒(10-15 s)量级。为了提高STM的时间分辨率,其中一种比较可行的办法是将超快激光的泵浦-探测(pump-probe)技术和STM相结合,利用超快光与电子隧穿过程的耦合来实现“飞秒-埃”尺度的极限探测。尽管超快激光技术和STM相耦合的概念在上世纪90年代就被提出,但是相关研究进展非常缓慢,主要受限于一系列技术难点,例如:激光的热效应对STM隧道电流的干扰、激光诱导电流的低信噪比、超快激光脉冲在STM中的展宽、激光与隧穿电子间的耦合机制等。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 96 97 98
  • ...
  • 142 143 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1