高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
Armfield-S6MKII标准水槽/玻璃侧面倾斜水槽
Armfield S6-MKIII 实验室流道是液压或土木工程师最重要的工具之一,无论是从事基本原理的教学还是研究实际问题的解决方案。流体力学中的许多应用都与水流通过开放通道有关,在开放通道中,水具有暴露于大气压力下的空气的自由表面。 水槽的长度从 5 米到 17.5 米不等,以 2.5 米为增量递增。Armfield 水槽安装在世界各地的教育和研究机构中。 提供全面的附件和测量仪器,包括排放控制、波浪生成和用于沉积物输送研究的闭环。   Armfield 的系列标准模块式倾斜水槽,50年来不断开发新产品,目前已有350多部成功安装案例。工作段为300 mm宽,450 mm深,最短工作长度为5m ,每2.5m为一个模块。 标准配置为一体化不锈钢床道和电子流量计。 可选配件包括沉积物再循环设备和电动起重机。配套有大量仪器和适用于开放水道的各种形状的模型,用来扩展其演示能力。 可选的电脑教学软件可以对每一次演示的结果进行自动分析。软件控制的随机造波机配件(S6-45)可提供全范围的演示和研究能力。     用于流体力学实验室实验、项目工作和研究活动的独立式玻璃倾斜水槽 水槽工作通道由 2.5m 长的模块化部分组装而成。有多种标准长度可供选择,从 5m 开始 水槽横截面宽 300 毫米,深 450 毫米 制造的高精度不锈钢床身提供出色的强度和刚度,无需单独的底架。 为了安装和维护设备,除顶升站外无需进行任何调整,实现典型床身变形小于 1 毫米 每个水槽都包含一个排放罐,该排放罐配有可调节的溢流堰和导流管,以避免飞溅和噪音 标配电磁流量计 提供全面的可选配件和仪器,以补充基本水槽的功能 闭环再循环是沉积物迁移研究的一种选择   工程 倾斜水槽最重要的方面是保持工作部分的完整性。为了实现这一点,需要极其坚固的设计,以确保无论负载或倾斜如何,几乎都不会发生偏转。   实验与研究 Armfield S6-MKIII 水槽是在 30 年的连续生产中开发出来的,示例已安装在世界各地的教育和研究机构中。 可提供不同长度的水槽以适应应用,短款适用于基本调查,长款适用于研究具有非均匀通道流动的逐渐变化的流动剖面。   所有 Armfield 教学和研究水槽都可以选择配备我们市场领先的软件的两种变体,提供数据采集和可选的软件控制添加。   数据记录和仪表系统 S6-MKIII-DTA-ALITE 是一个基于软件的应用程序,其支持硬件提供以下功能:   电子测斜仪测量床的坡度 用于测量的电子压力计:包括水流结构的压力读数 与皮托管一起使用的差压传感器 用于仪器的电压输入通道 用于测量水温的热敏电阻传感器 包含 USB 接口和软件,允许记录上述参数的数据。该软件包括复杂的采样、校准和绘图功能,包括以 Microsoft Excel 格式保存或导出数据的能力 S6-MKIII-DTA-ASuite 软件控制和数据采集包包括 S6-MKIII-DTA-ALITE 数据记录和仪器软件,此外在控制台内集成了一个逆变器,用于流道泵的电子速度控制。   控制功能: 循环泵的变频器速度控制,通过前面板控制或从 PC 控制。使用 PC 控制时,可以在 PID 回路中设置泵速以保持恒定流速 控制动力顶升系统设置特定的床身坡度
欧美大地仪器设备中国有限公司 2021-12-17
弗兰克 - 赫兹(汞管)实验仪 FH-Hg-6
实验内容 1、理解诺贝尔物理实验弗兰克 - 赫兹(汞管)实验仪的设计思想和方法; 2、研究灯丝电压、加热炉温度、反向拒斥电压等参数对实验现象的影响; 3、测量汞原子第一激发电位 63P1,了解原子能级的存在; 4、测量汞原子高能级激发态 63P2、61P1,加深对原子能级的理解; 5、测量汞原子电离电位。
成都华芯众合电子科技有限公司 2022-06-18
3-甲基喹噁啉-2-羧酸残留检测方法及试剂盒研究
研发阶段/n本成果在国内率先合成了喹乙醇残留标示物3一甲基-2喹噁啉一羧酸(MQCA),研究制成标准对照品,建立起MQCA在动物可食性组织中残留检测的高效液相色谱分析方法(HPLC)并提交国家标准。通过合成MQCA的人工抗原,制备出高效价、特异的抗体,建立起猪可食组织中MQCA残留酶联免疫吸附分析法(ELISA)。研制开发出MQCA残留ELISA检测试剂盒。通过HPLC法进行比对、动物残留试验、经有资质检测机构和研究单位的复核与应用等考核,该试剂盒的灵敏度、准确度、重现性、稳定性均达到国际残留分析的
华中农业大学 2021-01-12
催化合成甲基乙烯基二氯硅烷 以制备乙烯基环体
技术原理 :利用乙炔和二氯氢硅合成甲基乙烯基二氯硅烷单体,再将 单体水解、中和、裂解制得乙烯基环体。后者是生产乙烯基硅橡胶、硅油 和硅树脂的重要原料。 技术特点 :解决了硅氢加成反应中催化剂的稳定性及抑制二次加成反 应发生,提高催化剂的选择性(达 96%以上),使该项目首次成功地实现 了产业化。 投资规模 :实现 100 吨/年乙烯基环体,需要有 500M2 以上的生产厂 房
南昌大学 2021-04-14
央行设立科技创新再贷款:额度2000亿元,利率1.75%
为贯彻落实党中央、国务院决策部署,根据国务院常务会议要求,人民银行设立科技创新再贷款,引导金融机构加大对科技创新的支持力度,撬动社会资金促进科技创新。科技创新再贷款额度为2000亿元,利率1.75%,期限1年,可展期两次,发放对象包括国家开发银行、政策性银行、国有商业银行、中国邮政储蓄银行、股份制商业银行等共21家金融机构,按照金融机构发放符合要求的科技企业贷款本金60%提供资金支持。
中国人民银行微信公众号 2022-04-29
梯度纳米结构TWIP钢的晶体塑性有限元分析
强度和韧性的“倒置关系”是材料研究领域长期存在的难题。大量的实验表明,随着金属材料内部晶粒尺寸的降低,在强度获得提升的同时,韧性将大打折扣。目前,广泛采用的高强材料韧化策略有:(1)改变组分,通过引入和调整材料的多种主要元素,同时激活多种塑性变形机制,高熵合金材料就是采用这种思路;(2)改变微结构,在材料内部引入一种或多种梯度分布的微结构,避免由于特征长度突变带来的性能突变,有效克服金属材料强度和韧性的失配问题,这种材料被称为梯度纳米结构材料。 图1 梯度结构金属材料的类型(摘自:李毅,梯度结构金属材料研究进展,中国材料进展,2016, 35: 658-665)人工制备的梯度纳米金属结构主要包括以下几种:梯度晶粒,梯度位错,梯度孪晶,梯度固溶物,梯度相,以及包含两种以上的梯度混合结构。在已经发展成熟的金属材料内部引入梯度纳米结构,可以进一步提高其强韧性匹配能力。例如,通过表面研磨处理(SMAT)在孪晶诱发塑性(TWIP)钢表面引入大量的塑性变形,使其表面晶粒细化,随着深度的增加,晶粒细化的程度逐渐降低,同时塑性变形也会导致位错演化和孪晶的产生,因此在TWIP钢内部形成了包含梯度晶粒,梯度位错和梯度孪晶的梯度混合结构。这种梯度纳米结构TWIP钢的强度可以提升50%,断裂应变仅从60%下降到52%,具有更高的强韧性匹配能力。目前,关于梯度纳米结构TWIP钢的研究集中于实验,反映物理机制的本构模型研究还鲜见报道。西南交通大学力学与工程学院张旭教授与德国马普钢铁所、中国钢铁研究总院等机构开展合作,指导博士生陆晓翀发展出考虑位错滑移和变形孪晶等物理机制的微结构尺寸相关晶体塑性本构模型。依托DAMASK平台将该模型移植有限元,并对梯度纳米结构TWIP钢的单轴拉伸变形行为展开模拟,揭示了其微结构演化与宏观性能之间的关系,量化了不同梯度结构对材料强韧性的贡献。相关研究工作已在金属材料与固体力学交叉领域顶级期刊《International Journal of Plasticity》上在线发表,论文题目为Crystal plasticity finite element analysis of gradient nanostructured TWIP steel。 论文链接: https://doi.org/10.1016/j.ijplas.2020.102703作者首先使用不同晶粒尺寸Fe-15Mn-2Al-2Si-0.7C (wt.%) TWIP钢的单拉实验数据验证该模型的合理性,结果表明该模型对不同尺寸下的应力应变响应和应变强化行为都可以较好地描述,特别是细晶TWIP钢硬化率曲线中的up-turn效应。通过对内变量演化的分析及对比性模拟,作者发现这种up-turn效应源自于细晶中显著的背应力。 图2 对比不同晶粒尺寸TWIP钢的单拉实验和模拟结果由于梯度纳米结构TWIP钢的微结构十分复杂,晶粒数目众多,通过采用三维均匀化方法,建立了宏观试样尺寸的有限元模型。通过对每层单元赋予不同的晶粒尺寸,初始位错密度和孪晶体积分数,离散地描述材料内部微结构的梯度分布,并通过梯度网格划分方法进一步减少单元数目。对于材料表层微结构变化剧烈的区域,采用密度较高的网格,以保证更加精确地描述微结构的梯度变化。 图3三维均匀化方法示意图作者利用发展的晶体塑性模型,对均匀和梯度纳米结构的Fe-10Mn-0.5C-3Ni (wt.%) TWIP钢的单拉变形行为进行模拟。结果表明,在合理描述均匀结构TWIP钢应力-应变响应的基础上,通过引入微结构的梯度分布,无需修改任何参数就可以较好地描述梯度纳米结构TWIP钢的单拉力学行为。通过对比变形云图,作者发现均匀和梯度纳米结构TWIP钢的表面都会变的粗糙不平,但梯度纳米结构的表面粗糙度更加明显,产生的应变局域化形成了两个凹陷区,且凹陷区在垂直于平面方向也会发生收缩。随着深度的增加,收缩程度逐渐降低。通过对比性模拟,作者发现表面凹陷区的出现就是梯度纳米结构TWIP钢韧性略微下降的原因。而应变局域化的产生与表面纳米层晶粒的应变强化能力有关,提高表面纳米晶的硬化能力,就可以抑制表面凹陷区的出现和韧性的下降。此外,作者通过分析不同层位错密度的演化,进一步证实了上述观点。作者还通过对比性模拟量化了不同梯度结构对材料强韧性的贡献。结果表明:强度的提升源于梯度位错结构,梯度晶粒和梯度孪晶结构有助于保持材料的应变强化能力。 图4 均匀结构和梯度纳米结构TWIP钢的模拟结果对比分析。
西南交通大学 2021-04-10
农作物秸秆原料生产化工二元醇成套技术
乙二醇和丙二醇等化工二元醇主要用于聚酯树脂、防冻液以及粘合剂、油漆溶剂、耐寒润 滑剂和表面活性剂等的生产。目前绝大多数的化工二元醇是通过氢化裂解石油基底物或粮食基 葡萄糖得到的,面临着化石原料的日益枯竭和粮食安全等重大战略问题。利用丰富的、开再生 的农作物秸秆生产乙二醇和丙二醇等化工二元醇,是木质纤维素生物炼制的重要方向。本技术 的产业化实施将对传统农业的可持续发展和产业更新换代具有重大的提升作用,并大幅减少因 秸秆焚烧带来的雾霾等大气污染因素。然而,高额生产成本严重阻碍了本技术的产业化进程。 秸秆化工醇的生产成本具体表现在过程的高能耗和高废水排放上。 本项目的农作物秸秆原料生产乙二醇和丙二醇等化工二元醇成套技术采用华东理工大学研 发的干法生物炼制技术。该技术主要包括干法稀酸预处理、高固体含量酶促糖化和秸秆糖连续 加氢裂解等主要工序。其中,干法稀酸预处理技术使用新型的螺带搅拌式预处理反应器,实现 了过程零废水排放,新鲜水和蒸汽用量比典型的预处理技术降低80%以上;高固体含量酶促糖 化技术则通过自主研发的螺带型反应器处理固含量达20%以上的秸秆底物酶解,可得到糖浓度 高于10%的秸秆糖化液;秸秆糖连续加氢裂解技术则实现了化工二元醇生产过程的连续化和催 化剂的循环利用。通过该成套技术可以得到不低于20%(w/w)浓度化工二元醇的裂解液,纤 维素转化率达75%以上。本技术的实施将会大大降低纤维素化工醇的生产成本,为纤维素化工 醇的产业化奠定基础
华东理工大学 2021-04-11
一种基于元模型的智慧城市异构数据共享方法
本发明公开了一种基于元模型的智慧城市异构数据共享方法,包括 1:基于 MOF 元建模理论,构 建城市数据元模型建模框架;2:根据城市数据特征及描述需求,构建城市数据元模型通用元素集;3: 根据城市数据基本分类和专用元素集扩展模式,发展数据元模型专用元素集;4:基于 XML 模板建模, 形成元模型通用元素集和专用元素集形式化方法;5:实现网络目录服务、数据服务,建立开放式城市 数据元模型注册和管理平台;6:根据用户实际应用需求,设计城市数据细粒度发现接口并获得数据。 本发明为用户提供了一种开放式、标准化城市异构数据共享的解决方案,为城市异构数据在线访问、后 续处理及协同应用提供了支持,是城市异构数据共享中高效实用可靠的方法。
武汉大学 2021-04-13
基于余能原理的基面力元法及其计算软件
北京工业大学 2021-04-14
基于先进三元材料锂电池的储能系统
储能系统在应用领域上可以分为小型无间断备用电源(UPS)和大型储能电站(ESS)。UPS在停电时给计算机/服务器、存储设备、网络设备等计算机、通信网络系统或工业控制系统、需要持续运转的工业设备等提供不间断的电力供应。储能电站的目的是“削峰填谷”,可以把用电低谷期低价的富余的电储存起来,在用电高峰电价较贵的时候再拿出来用,可以为用户节约用电成本,也能在用电高峰期缓解电网的用电压力。储能电站还可存储太阳能和风能电站产生的电能,将光能和风能与储能电站完美结合,实现可再生电能的有效储存,突破时间和气候限制,解决了太阳能和风能由于缺乏稳定性而造成的并网难题。 目前市场上的储能系统多是基于传统的铅酸电池,铅酸电池虽然价格低廉,但是它主要有由金属铅构成,对环境危害很大,而且它们寿命很短,通常2年左右就要更换全部电池。在低碳和环保背景下,用新型锂离子电池代替传统铅酸电池是大势所趋。市场上虽然有基于磷酸铁锂电池的储能系统,但是磷酸铁锂电池价格高昂,是铅酸电池的3倍以上,在市场上缺乏竞争力。本项目的目的是设计和制造基于廉价三元锂电池的储能系统,可以用于备用电源也可以用于储能电站,比基于磷酸铁锂的储能系统在成本上能降低30%以上,而且能量密度更高,重量和占地面积都显著降低。崔博士已经和敦煌力波能源科技有限公司合作在敦煌市的国家级光电基地建造了一个0.5MWH的储能电站系统,这个储能电站主要服务于一个光伏电厂,在光照不足时为辅助光伏板以产生稳定的输出功率。
上海理工大学 2021-04-13
首页 上一页 1 2
  • ...
  • 35 36 37
  • ...
  • 70 71 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1