AI机器学习技术加速功能新材料的研发
1.痛点问题
新材料的设计与研发往往面临挑战:急需的新材料难以快速筛选设计,而设计出的新材料又难以找到高效且低成本的合成配方,拥有合成配方的新材料又会面临规模化的长周期探索。根据国家工业和信息化部对30余家大型骨干企业调查结果显示,130种关键材料中,有32%国内完全空白、54%虽能生产,但性能稳定性较差、只有14%左右可以完全自给,亟需新思路来解决我国新材料研发难题。本项目着眼于新材料研发,希望通过创建目前业内空白的智能化新材料研发范式,引领行业智能材料开发自动化服务与工艺的开发。
在数字化、智能化浪潮中,国家和各行业的产业界都非常看重科研的智能化升级。通过持续的交流与调研,我们发现许多企业和研发团队目前对智能研发存在大量潜在需求,而智能研究服务与工艺的同类竞品极少。因此,清华智研将作为一家高新科技企业,以AI赋能研发(AIEmpoweringResearch&Development)为使命,组建国际顶尖水平团队,向国内引进并自主开发世界前沿的AIforScience技术,打造世界级的AI未来实验室(World-ClassAIFutureLab)。
2.解决方案
本技术为新材料研发数字化智能服务平台,可在材料研发过程中对各个尺度以及不同研发阶段下进行智能化的加速及分析服务。以各种人工智能算法为核心,如主动学习算法,图神经网络,卷积神经网络等,我们根据不同材料体系的尺度包括三大方面:1.针对分子及晶体等微观尺度的功能材料研发,设计智能化的深度学习系统。2.针对二维功能材料及其功能性器件、催化剂、膜材料等宏观尺度,设计智能化的深度学习系统。3.针对功能材料研发的表征仪器等平台尺度,设计智能化的系统解决方案。这些智能化解决方案能极大地加速新材料尤其是碳中和相关材料的研发速度,从而大大地降低研发成本与时间,为企业获得有竞争优势的科研壁垒。
自动化和人工智能助力未来智能实验室的方方面面,从样品制备(称量固体、添加液体、超声处理.等),到合成(分配液体,控制温度,混合,测量pH值,干燥等)、表征(气相色谱,高效液相色谱,分光光度法等),通过自动化/机器人的辅助,可以有效提高可重复性,提高信噪比,加快实验速度。通过人工智能技术,将实验数据转换为可操作的智能指导,快速浏览并利用复杂的数据,提升认知能力。
智能化研发平台
3.合作需求
拟成立公司推动该项成果的产业化进程,希望对接
1)工程化、产品化所需的资源;
2)新能源、新材料领域合作企业。
清华大学
2022-09-23