高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
理学院大数据研究团队在人工智能与大数据处理领域发表系列高水平研究成果
我校理学院大数据研究团队在人工智能与大数据处理技术研究方面取得系列进展,研究成果分别发表在IEEE Transactions on Neural Networks and Learning Systems、IEEE Transactions on Cybernetics和Information Sciences三大人工智能顶级期刊。神经网络是人工智能领域中目前最为火热的研究方向——深度学习的架构基础。虽然深度学习在近几年发展迅速,但是关于如何设计最优神经网络架构的问题仍处于探索阶段。该团队分别针对人工智能中神经网络结构复杂、高维大规模数据存在无效和冗余特征、难以获取长时序信息等问题与缺陷,设计出了一系列网络结构优化、大数据特征选择和时序循环神经网络模型,有效改善了上述不足,提高了人工智能模型的学习性能。 题目为《带Group Lasso惩罚与控制冗余的神经网络特征选择》(Feature Selection using a Neural Network With Group Lasso Regularization and Controlled Redundancy)的研究论文发表在人工智能领域权威国际期刊IEEE Transactions on Neural Networks and Learning Systems。王健副教授和博士生张华清为该论文共同第一作者, 我校荣誉教授Nikhil R. Pal院士(印度统计研究所)参与指导,中国石油大学(华东)为第一署名单位。该项工作得到国家自然科学基金、国家科技重大专项、山东自然科学基金、中央高校基本科研业务费、中国石油天然气集团公司重大科技项目以及山东省高校青年创新科技支撑计划的资助。 特征选择技术也称属性选择,是指从原始特征或属性中选择出最有效的特征或属性以降低数据维度的过程,它是人工智能数据预处理环节的重要步骤,也是大数据处理技术的重要环节。该项工作在神经网络中嵌入Group Lasso惩罚项并实现特征冗余控制,在选出对解决问题最有帮助、蕴含信息量最大的特征或属性的同时,控制所选特征子集的冗余程度,以达到降维的最优效果,从而使模型的泛化能力更强,降低神经网络模型产生过拟合的风险。 题目为《基于L1正则化的神经网络结构优化模型设计与分析》(Learning Optimized Structure of Neural Networks by Hidden Node Pruning With L1Regularization)的研究论文发表在国际人工智能领域权威期刊IEEE Transactions on Cybernetics。硕士生谢雪涛和博士生张华清为论文共同第一作者,王健副教授为通讯作者,我校荣誉教授Nikhil R. Pal院士(印度统计研究所)参与指导,中国石油大学(华东)为第一署名单位。该项研究成果得到了国家自然科学基金、山东省自然科学基金和中央高校基本科研业务费的资助。 该项工作借助L1正则子具有的稀疏表达能力,提出两种神经网络结构优化学习模型;本项工作另外一个突出贡献就是提出了一种简单且具有通用性的收敛性证明方法,同时保证了模型设计的合理性。实验结果表明所提出模型具有强大的鲁棒性、广泛的适用性、理想的剪枝能力和良好的泛化能力,适用处理高维大数据。该研究成果在人工智能与深度学习构造最简网络结构方面具有很强的指导作用和应用推广价值。
中国石油大学(华东) 2021-02-01
一种犬的急性肾衰竭模型建立的方法
本发明属于急性肾衰竭模型构建技术领域,公开了一种犬的急性肾衰竭模型建立的方法,试验动物的确定及分组;仪器和试剂的确定;样品的采集;指标的测定;统计分析。本发明提供的犬的急性肾衰竭模型建立的方法,采用腺嘌呤来诱导建立犬急性肾衰竭的模型,通过血液和尿液等指标的检测及肾脏组织病理学变化来判断模型是否成功建立,进而确定腺嘌呤诱导犬急性肾衰竭的最佳剂量。综合结果表明,给犬添加75mg/kg·d的腺嘌呤饲喂15天可以成功建立急性肾衰竭模型,即75mg腺嘌呤模型组所用造模剂量合适,造模15天后动物能达到急性肾衰竭的理想造模状态,同时也能避免手术等对试验动物造成额外的伤害,引起动物急性死亡。
华中农业大学 2021-04-11
XM-407A心脏的发生和内部的分隔示教模型
XM-407A心脏的发生和内部的分隔示教模型   XM-407A心脏的发生和内部的分隔示教模型由6部件组成,显示心脏的发生和心脏内部的分割过程。 尺寸:放大 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
一种混合模型及基于混合模型的连铸漏钢预报方法
简介:本发明公开了一种用于连铸漏钢预报的混合模型,属于冶金连铸中监控技术领域。混合模型包括:基于GA‑BP神经网络的单偶时序模型和基于逻辑判断的组偶空间模型。该预报方法的步骤为:1)监控结晶器温度并存储数据;2)将数据输入单偶时序模型,判断每个热电偶温度随时间变化是否符合粘结时温度变化波形,将判断结果保存到数组Y(i,j,t)中;3)当Y(i,j,t)在阀值范围[θmin,θmax]内时,标记该热电偶异常,计算第i行、i‑1行异常热电偶数目分别为m、n;4)利用m+n与粘结报警和粘结警告热电偶数目阀值比较进行粘结判断。本发明实现了提高粘结性漏钢识别精度的目标。
安徽工业大学 2021-04-11
一种基于运行数据对中央空调系统节能诊断及节能潜力分析的方法
成果描述:本发明公开了一种基于运行数据对中央空调系统节能诊断及节能潜力分析的方法,基于中央空调系统实际运行数据,经对输入数据进行数据预处理后,再经数据分析步骤对已进行预处理的数据进行系统工况模式识别、系统设备运行时长与均等运行策略分析、系统设备运行次序分析、系统设备变频特性分析、系统设备出力与能耗特性分析、系统及设备运行约束条件分析,基于此再经节能潜力计算步骤对系统最小运行能耗(或费用)进行计算,得到系统节能诊断结果及节能潜力情况。本发明方法通过对系统实际运行数据的分析,给使用者提供更全面、更符合实际的节能诊断和节能潜力结果,为系统节能优化运行和节能改造等提供重要决策依据。市场前景分析:暖通工程领域。与同类成果相比的优势分析:技术先进,性价比较高。
西南交通大学 2021-04-10
一种基于运行数据对中央空调系统节能诊断及节能潜力分析的方法
本发明公开了一种基于运行数据对中央空调系统节能诊断及节能潜力分析的方法,基于中央空调系统实际运行数据,经对输入数据进行数据预处理后,再经数据分析步骤对已进行预处理的数据进行系统工况模式识别、系统设备运行时长与均等运行策略分析、系统设备运行次序分析、系统设备变频特性分析、系统设备出力与能耗特性分析、系统及设备运行约束条件分析,基于此再经节能潜力计算步骤对系统最小运行能耗(或费用)进行计算,得到系统节能诊断结果及节能潜力情况。本发明方法通过对系统实际运行数据的分析,给使用者提供更全面、更符合实际的节能诊断和节能潜力结果,为系统节能优化运行和节能改造等提供重要决策依据。
西南交通大学 2018-09-19
面向数据密集型应用的扁平化、低时延、 可重构光电混合互连系统
随着云计算、大数据、分布式AI等数据密集型应用的部署,大规模计算集群(数据中心、分布式AI集群、高性能计算集群)的体系结构、通信模式、流量状态、应用需求发生了极大的改变,上述改变对计算网络的吞吐、时延、带宽提出了极大的挑战,传统电互连网络技术存在拓扑结构复杂、线缆开销巨大、设备数量过多、可集成端口密度有限、网络能耗难以优化等问题,与电互连技术相比,光互连具有高带宽、低能耗、低开销、低时延等特点,具有较大潜力满足数据密集型应用对传输带宽、网络能耗、传输时延、通信逻辑适配等方面的需求,但受到缓存、交换粒度的影响,纯光互连网络难以承载突发性强、数据量小、实时性高的通信任务,因此,充分结合光、电互连技术的优点,研究面向数据密集型应用的扁平化、低时延、可重构光电混合网络,对于突破新型计算网络所面临的功耗、吞吐、时延、扩展性等方面的挑战至关重要。 围绕下一代数据密集型应用对互连网络高带宽、低时延、低能耗、高扩展性的需求,展开高容量、低开销、可重构、扁平化光电混合互连架构的研究。结合光、电交换技术的特点,设计高扩展、低复杂度、大容量、低能耗的光电混合互连拓扑结构;研究低开销、快速响应的光电路/光分组交换控制系统,设计面向快速光交换计算的调度算法;研究低阻塞、多粒度、高连通性的光交换机制及交换芯片;构建高性能光电混合互连网络系统原型,部署典型应用测试基准,验证光电混合网络的潜在优势,为下一代计算网络架构的技术革新提供理论和实践指导。
西安电子科技大学 2022-06-17
十七部门关于印发《“数据要素×”三年行动计划(2024—2026年)》的通知
到2026年底,数据要素应用广度和深度大幅拓展,在经济发展领域数据要素乘数效应得到显现,打造300个以上示范性强、显示度高、带动性广的典型应用场景......
“国家数据局”微信公众号 2024-01-08
国家发展改革委 国家数据局关于印发《数字经济促进共同富裕实施方案》的通知
将数字素养培训相关内容纳入中小学、社区和老年教育教学活动,加强普通高校和职业院校数字技术相关学科专业建设。
国家发展改革委网站 2024-01-06
中国区域高分辨率气象驱动数据集
清华大学地球系统科学系阳坤教授课题组在《科学数据》(Scientific Data)上发表题为“The first high-resolution meteorological forcing dataset for land process studies over China”的研究成果,发布了过去十年间阳坤团队开发的一套服务于陆面、水文、生态等地表过程模型的中国高时空分辨率气象数据集。该数据采用严格的数据质量控制,统一的站点数据、卫星数据和再分析数据的融合方法,避免了不同学者对同一研究区域气象数据的重复处理。近地面气象数据是地表模型的主要驱动。自2004年美国国家航空航天局(NASA)发布全球陆面数据同化(GLDAS)气象数据以来,北美、欧洲等区域高分辨率气象驱动数据集也不断涌现。阳坤教授团队自2008年起利用中国气象局数据共享的契机,开始了中国区域高分辨率气象驱动数据集的开发,建立了气象数据的预处理系统和融合系统,完成了首套相对稳定可靠的长时间序列数据产品。该数据集覆盖了中国陆地区域,时间跨度为40年(1979-2018),空间分辨率0.1度,时间分辨率3小时,包括了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等 7 个变量。基于独立站点数据的评估表明,该数据集较国际上广泛使用的 GLDAS 数据集具有更高精度。目前,该中国区域高分辨率气象驱动数据集已发布在国家青藏高原科学数据中心,可免费获取。原文链接:https://www.nature.com/articles/s41597-020-0369-y数据网址:https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file
清华大学 2021-04-10
首页 上一页 1 2
  • ...
  • 49 50 51
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1