高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
镁合金表面无铬转化技术开发
悬赏金额:10万元 发榜企业:深圳市豪龙新材料技术有限公司  需求领域:精细化工 产业集群:先进材料产业集群 技术关键词:光刻树脂; 光刻胶; 特种硅树脂; 高性能硅橡胶; 紫外光固化技术
深圳市豪龙新材料技术有限公司 2021-11-02
可用于增材制造的高强铝镁合金
铝及其合金是工程应用最广泛的结构材料之一。传统的铝合金零件通过铸造、锻造和粉末冶金等方法制造,与这些传统制造过程相关的工具设备增加了制造成本和交付周期。3D打印技术由于为制造设计提供了丰富的自由度而广泛应用于工程零件的制造。现有3D打印技术中,选择性激光熔化(SLM)是发展最为广泛的方法之一。但是SLM工艺中的冶金缺陷如许多裂纹、球化和气孔导致只有有限数量的金属适合该种工艺,且具备满足要求的密度、微观结构和强度。 中南大学粉末冶金研究院李瑞迪研究员和新西兰奥克兰大学、中车工业研究院有限公司等单位合作通过对合金元素进行调控和热处理工艺的探索,发展了一种适用于SLM制备工艺,具有良好抗裂性和高强度Al-Mg-Si-Sc-Zr合金。相关论文以题为“Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms”于4月13日在金属材料顶级期刊《Acta Materialia》在线发表。 在该项工作中,研究人员设计了一系列Al-Mg(-Si)-Sc-Zr合金,并用雾化合金粉末进行3D打印制备。在没有Si元素的情况下,Al-xMg-0.2Sc-0.1Zr(x=1.5,3.0,6.0wt.%)合金在制备过程中均易发生热裂纹,平均裂纹密度随Mg含量的增加而增大。发现在Al-6Mg-0.2Sc-0.1Zr合金中加入1.3wt%的Si能够有效地抑制SLM过程中的热裂纹,同时细化制备合金的微结构,从而提高打印试样的力学性能。 图1:不同成分的打印样品晶粒尺寸和形貌EBSD分析结果:(a)1.5 wt%Mg,合金1;(b)3.0 wt%Mg,合金2;(c)6.0 wt%Mg,合金3;(d)6.0 wt%Mg+1.3 wt%Si,合金4。晶体学取向用倒极图(IPF)表示。 图2:Mg和Si元素对试样断裂行为的影响。(a)不同合金成分(合金1,合金2,合金3,合金4)的拉应力应变曲线。(b-e)合金1(b)、合金2(c)、合金3(d)、合金4(e)的断口SEM图像。 通过对合金成分的进一步微调,研究人员设计了一种新型合金Al-8.0Mg-1.3Si-0.5Mn-0.5Sc-0.3Zr。这种新合金具有明显的细化微观组织,由亚微米胞体和胞体中存在的共晶Al3(Sc,Zr)纳米粒子(2-15nm)和粒间Al-Mg2Si共晶(Mg2Si直径10-100nm)组成。打印试样中形成了高密度的层错和独特的9R相。试样的拉伸强度和延伸率分别达到497MPa和11%。经过时效处理后,试样的拉伸强度达到550MPa,塑性在8%~17%之间。除了固溶强化、晶界强化和纳米颗粒强化外,高密度层错也有助于强化。 图3:不同组分(a1-4)合金#4;(b1-4)合金#5的SLM打印样品的细晶区TEM图像:(a1-2)合金4的胞状结构;(a3-4)合金的柱状结构;(b1-5)合金(b2)的胞状结构是(b1)的暗场图像;(b3-4)合金的柱状组织#5;图(a2),(a4),(b2)和(b4)显示了晶间共晶组织;(b5)是SLM-printed Alloy#5细胞的干HAADF图像和主要元素(Al、Mg、Si、Sc、Mn和Zr)的相应EDX图谱。 图4:(a)SLM打印合金#5时效前后的拉伸应力应变曲线。曲线“#5”表示打印合金#5;曲线“#5-HT1”表示360℃时效8h的合金#5;曲线“#5-HT2”表示300℃时效8h的合金#5。(b)在合金#5-HT2断裂处拉伸试样的透射电镜显示具有高密度位错和SFs的变形组织。(c)沿[001]方向的变形亚晶中滑移带和滑移方向的HRTEM图像。(d)在(-100)面上用(c)图中标记区域的傅里叶逆变换图像显示出高密度位错。 这项研究成果通过在原有3D打印Al-Mg-Sc-Zr合金中添加Si元素,形成了精细打印微观组织,获得了无裂纹的打印合金成分。随后通过热处理时效工艺引入高密度层错并细化晶粒,开发出了一种具有低热裂敏感性和高强度的新型铝镁合金。这项工作提供了一种解决和消除SLM工艺中的冶金缺陷的铝镁合金成分设计方法和热处理工艺,推动了SLM制造技术的工程应用。
中南大学 2021-04-11
高品质镁合金集成与循环应用技术
本成果针对镁合金生产与应用过程中的关键问题,成功开发了镁合金目标 产品的集成应用技术和循环利用技术,打通了目标产品的合金开发、产品设计、 材料加工、产品生产、产品应用和合金废料返回利用的整个技术链条和循环过程。 主要创新成果为:1)发明了一批高品质镁合金。2)开发和发明了高质量铸造产 品高效环保加工技术和成套的型材挤压技术,成功制备了世界上最大规格的中 空型材;大幅度提高了铸件的成品率。3)首次创新开发了 “重质夹杂逆向自净 化”的“反向"过滤技术和成套装备,攻克了过滤精炼能力快速衰减的国际难题。 4)建立了镁合金材料及产品服役性能数据库,开发了专家预测系统及先进的镁 产品开发技术系统,建成了国内外第一个综合性的“镁合金材料替换设计及产品 应用技术开发平台",解决了镁产品推广应用中新材料和新产品脱节的瓶颈问题。 成功开发了 200余款(种)镁合金及铸造产品、300多种规格高品质镁合金 管型材和两大系列镁合金气体保护熔铸和废镁回收再生装备,已在1000多万辆 汽车得到成功应用,并已成功装备轨道交通工具及军工关键装备上。节能效益非 常明显,创造了显著的经济效益和社会效益。
重庆大学 2021-04-11
轻合金上耐磨涂层的硬质阳极氧化技术
本项目针对实际生产中存在的铝合金机匣变色、耐磨性不够高等困扰企业多 年的技术难题,经过工艺改进和优化,开发出了纳米尺度阳极氧化新技术,解决 了铝合金机匣变色的技术难题。近5年来,采用纳米阳极氧化新技术处理的铝合 金机匣40余万件,产生直接经济效益1200万元,每年节约成本200万元。同时, 在节能排放方面产生了巨大的社会效益。
重庆大学 2021-04-11
一种以胶原蛋白为生物矿化模板制备 Fe2O3 纳米粒子的 方法
生物矿化是指生物体通过生物大分子的调控作用生成无机矿物质的过程,它是链接无机与生物之间的桥梁。与一般矿化最大的不同在于,它是生物在特定的部位,在一定的物理化学条件下,在生物有机物质的参与控制或影响下,将溶液中的离子转变为固相矿物的过程。像骨骼,鳞片,牙齿等的形成都是自然界中比较常见的生物矿化过程。与工业生产条件不同,生物矿化不需要苛刻的条件,它是一个条件温和、低耗能且无污染的物理化学过程。生物矿化采用了自然界中比较简单且常见的组分,并且可以实现对样品从成核到结晶过程的调控。因此,探索并模仿生物矿化中
兰州大学 2021-04-14
家蚕中肠特异高表达启动子p2及其应用
该发明为家蚕中肠特异启动子P2 ,其在家中肠特异性表达外源蛋白的应用,本发明还涉及家蚕中肠特异 启动子P2的重组载体及其制备方法;本启动子可以特异性地启动下游基因在家蚕中肠高量表达,为硏究和利 用家蚕中肠特异基因,特别是中肠特异高量表达的免疫抗性相关基因提供了有力的工具;同时也能在家蚕中 肠特异高量表达外源基因,具有良好的应用前景。
西南大学 2021-04-13
一种绘制 P-III 型分布频率曲线的优化方法
本发明公开了一种绘制 P-III 型分布频率曲线的优化方法,通过建立 P-III 型分布频率曲线优化模型, 对理论频率和经验频率的相对误差赋予不同的权重,以相对误差权重的平方和最小为目标函数,并根据 流域概况和水库的实际情况添加参数的约束条件,以矩法估计的参数为初值,采用改进的非常快速模拟 退火算法求解模型,得到参数的最优解,从而绘制出 P-III
武汉大学 2021-04-14
良田P1000A3S高拍仪多媒体教学首选产品
深圳市新良田科技股份有限公司 2021-08-23
P06/N01/PSt压电陶瓷促动器—芯明天科技
产品详细介绍 压电陶瓷,是一种能够将机械能和电能互相转换的功能陶瓷材料。压电陶瓷到底是一种什么样的材料呢?压电陶瓷属于无机非金属材料。这是一种具有压电效应的材料。所谓压电效应是指某些介质在力的作用下产生形变,引起介质表面带电,这是正压电效应。反之,施加激励电场,介质将产生机械形变,称逆压电效应。这种奇妙的效应已经被科学家应用在与人民生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控制等功能 特性:纳米级分辨率      无摩擦,无间隙      刚度强,使用寿命长      可选择位置传感功能进行闭环控制      真空兼容,可在高温或低温下操作      机械接头形式:螺纹、圆球、平头      可根据客户要求定制应用:通信,光纤调节      显微镜微调,机械工程      微系统技术,你米定位技术      半导体设备,精密仪器      阀门(真空管)      度量衡/干涉度量学      生命科学/生物技术   
哈尔滨芯明天科技有限公司 2021-08-23
立体易SCAN-P5 齿科/首饰 三维扫描仪
产品详细介绍
广州市网能产品设计有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 34 35 36
  • ...
  • 62 63 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1