高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新型高效MnxV2O5+x基可见光催化剂的催化机理及动态表征
环境污染和能源短缺已成为当今世界面临的最主要危机,人们不断探究治理环境和开发可再生能源的新方法。于1972年,Fujishima和Honda报道采用TiO2光电极和铂电极组成光电化学体系使水分解为氢气和氧气,从而开辟了半导体催化这一新的研究领域。近些年,将有机污染物降解已经成为能源环境科学领域的研究热点。该研究对于治理水污染,保护水环境具有重要的科学意义。 主要通过化学方法可控的调控可见光催化材料纳米晶体的尺寸和形貌,合成具有规则形貌和特定裸露晶面的可见光催化材料(例如纳米棒、纳米带、纳米片、纳米八面体和纳米六面体等),并在此基础上进一步优化能级能带结构,同时探究催化剂不同晶面上光生载流子的分离行为、氧化还原能力以及催化活性的选择性等独特性质,深入结合理论模拟计算,研究不同形貌的催化剂的裸露晶面上光生载流子的行为和表面/界面微观反应机制。为了深入研究太阳能-化学能转化过程中的关键科学问题,构筑一种新型的具有特定结构和功能的MnxV2O5+x(x=1、2或3)基可见光催化材料,在不添加任何贵金属元素的情况下,Mn3V2O8修饰的V2O5/g-C3N4异质结构在可见光照射下表现出明显的光催化活性,比V2O5/g-C3N4异质结构高出近3倍。由于V2O5和g-C3N4之间的Z-方案路径促进了载流子的分离,因此具有优异的可见光催化活性。
淮阴工学院 2021-05-11
氧化石墨烯/酞菁纳米棒复合杂化材料用于可见光催化剂还原六价铬
六价铬对人体具有慢性毒害,可以通过消化道、呼吸道、皮肤和粘膜侵入人体,主要积聚在人体内的肝、肾和内分泌腺中。六价铬有强氧化作用,所以慢性中毒往往以局部损害开始,逐渐发展到不可救药。通过光催化可实现六价铬还原为无毒害的三价铬。现有光催化剂多数只能利用紫外光区域,催化性能较低。酞菁在可见光区域具有良好吸收效果,通过利用八甲基取代的酞菁铜纳米棒与氧化石墨烯制备复合材料,可以有效提高光催化剂的光谱吸收范围,实现太阳能的充分利用,同时加快电荷传输,实现在水溶液中高效还原六价铬,在日常太阳光照下两小时内降解97%的水中的六价铬。
南方科技大学 2021-04-13
深空探测通信传输技术
哈尔滨工业大学 2021-04-14
超高速光通信集成电路与系统、射频集成电路与系统以及数模混合集成电路
1.4×25Gb/s NRZ Optical Transmitter and Receiver; 2.50G PON Burst Mode TIA; 3.4×56Gbaud/s PAM4 Optical Transmitter and Receiver。 陈莹梅教授团队于2015年至2020年期间,共承接华为技术有限公司、海思光电子有限公司等多家企业的横向合作项目9项,其中10G线性均衡器芯片已在海思商用,高速以太电口模拟器已在华为量产,24路总传输速率1.344Tb/s的数控可调衰减器芯片正在华为量产准备中。
东南大学 2021-04-13
铈氮氟共掺杂二氧化钛光催化剂及 在可见光降解有机污染物中的应用
本发明涉及铈氮氟共掺杂二氧化钛光催化剂及其在可见光降解有机污染物中的应用。采用的技术方案是:铈氮氟共掺杂二氧化钛光催化剂,其制备方法如下:将钛酸丁酯在搅拌下缓慢滴入乙醇和冰乙酸混合溶液中,搅拌均匀后,逐滴加入氢氟酸溶液,搅拌形成透明混合溶液A;将氨水与乙醇混合,加入硝酸铈,调节pH至2,配成溶液B;将溶液B缓慢滴入溶液A中,得到均匀透明溶胶;在空气中放置陈化,得到固体凝胶;干燥后研磨成粉末,置于马弗炉中400~500℃,焙烧40 min~1.5 h,得到铈氮氟共掺杂二氧化钛光催化剂。合成方法简单的,稳定的,形成催化效率高的非金属和金属三掺杂二氧化钛光催化剂。多元素共掺杂催化剂得到的产物在粒径、形貌上与对比单掺杂或双掺杂有较大的不同,多元素共掺杂能大幅度提高催化剂的催化活性,给催化剂的物理性质带来很多优点,如粒径变小,表面积增大,表面具有特殊结构。本发明的目的是为了扩大TiO2的可见光响应范围,减小电子和空穴的复合,从而提高TiO2对太阳能的利用率,提高其可见光催化活性,因此本发明对TiO2表面进行修饰,提供一种在可见光作用下,光催化效果好的铈氮氟共掺杂二氧化钛光催化剂及其制备方法。采用铈氮氟共掺杂二氧化钛光催化照射的方法处理双酚A废水,使其降解率达到99%以上,不完全降解率低于0.5%。
辽宁大学 2021-04-11
厦门大学电子科学与技术学院罗正钱教授团队在可见光时空锁模光纤激光器研究取得重要进展
罗正钱教授团队采用少模Pr/Yb共掺双包层ZBLAN光纤作为可见光增益介质,构建基于非线性偏转旋转(NPR)技术的锁模激光腔,利用腔内空间滤波效应和NPR可饱和吸收效应补偿阶跃折射率光纤中超大的模间色散,从而平衡了各横模之间的走离效应,首次实现了可见光波段的时空锁模光纤激光。
厦门大学 2022-06-15
VHF/UHF 频段基于 OFDM 技术的高速数据通信系统
无线通信的突出问题:频率资源严重不足 。 我国无管会允许在这一频段进行数据的传输,如地质矿产、水利、 能源、国家地震局、建设部、气象局、军队等部门的专用无线通信系 统。 调研发现,目前这些部门迫切需要系统能够同时传送数据、语音 和图象。现有无线数据通信系统:小于 0.5bps/Hz 。 本项目提出的解决方案是采用 OFDM 及自适应变速率 MQAM技术,建立一个多载波无线通信系统。这一系统可以在 25KHz 带宽 内,有效频带利用率达到 3.2 -6.4bps /Hz;而且具有结构简单、成本 低的特点,可以很好地解决频带资源不足的问题,具有广阔的应用前 景
南开大学 2021-04-11
通信用低弯曲损耗光纤及传输系统
项目简介 本成果提出利用非单模光纤实现低弯曲损耗传输,借助模式间正交性,设计出的光 纤具有单模传输、与普通单模光纤匹配的模场分布和低弯曲损耗的特点,本发明光纤无 需对光纤制备硬件进行改造,采用光纤成熟制备工艺即可获得高性能传输光纤。该成果 已完成样品制备与测试,并经实际使用测试,性能可靠稳定,目前已申请发明专利 6 项, 其中已授权发明专利 2 项(ZL201110356520.2,ZL201010589018.1)。136 性能指标 (1)与普通单模光纤连接损耗小于 0.1 dB。
江苏大学 2021-04-14
一种公路交通信号传输装置
本实用新型公开了一种公路交通信号传输装置,包括主体,所述主体的前端设有安装板,所述主体的上端面设有指示灯,所述主体上设有信号接收器,所述主体上设有提手放置槽,所述提手放置槽的内部设有提拿结构,所述主体的下端面边缘设有支脚,所述支脚的下端均连接有强力吸盘,所述主体的左侧设有电插孔,所述主体的上端面中部设有单片机,所述单片机的输入端电连接电插孔的输出端,本实用新型结构简单、使用方便,可以避免车辆需要依次读取前排车辆所显示信号所带来的延迟,避免交通堵塞的出现,保证车辆的正常行驶,具备相应的提拿和固定结构,
安徽建筑大学 2021-01-12
宽带移动通信容量逼近传输技术及产业化应用
成果介绍宽带化移动信息服务成为现代信息社会发展的基本需求。在频率资源日趋匮乏的条件下,如何大幅度提升其使用效率,成为宽带移动通信的核心技术问题。 本技术发明揭示了多天线宽带移动通信环境下的容量可达传输为特征模式传输,在攻克了广义多载波、普适多天线传输以及双涡轮迭代接收等一系列关键技术的基础上,率先将宽带移动通信容量逼近理论与技术推向工程实践和规模产业化应用,关键技术指标处于业界领先水平。相关提案被3GPP国际标准化组织采纳,并获通信国际学术界有重要影响的IEEE通信理论莱斯最佳论文奖。技术创新点及参数1、广义多载波传输技术:为解决宽带化所引发的系统复杂性,发明了广义多载波传输技术,经典的正交频分复用多载波技术为其特例。具有快速实现、频谱利用率高、抗多径能力强、峰均比低、对频偏不敏感、子载波可异步运用等一系列优点,适应大范围覆盖和无线资源的灵活调配。 2、普适多天线传输技术:采用多天线的MIMO 传输技术是大幅度提高频谱和功率效率的基本途径。针对普遍意义上的空时联合相关信道模型,发明了普适MIMO 传输技术,通过信道特征的实时感知及在线容量估算,自适应地优化发送机与接收机,在实时逼近信道容量限的同时,解决了一直困扰业界的MIMO 技术在各种复杂无线环境中的应用难题。 3、双涡轮迭代接收技术:逼近容量限的接收技术是业界长期追求的目标。发明了双涡轮迭代接收技术,通过双层并发迭代环路,对多载波、多天线接收机进行整体优化,在获得逼近容量限接收性能的同时,突破了计算复杂度及处理延时等方面的应用瓶颈。市场前景本发明被应用于华为公司的3G 增强及演进型宽带主力基站产品,已在世界五大洲20 余个国家投入商用;本发明还被应用于展讯公司终端芯片产品及瀚讯公司宽带无线应急通信系统等。本发明已累计产生了近10 亿元直接经济效益,并在世博安保及汶川抗震救灾中发挥了重要作用。本发明所涉及的18 篇技术提案被3GPP 主流国际标准化组织采纳,相关成果在IEEE 核心刊物发表,并被欧洲标准化组织ETSI 丛书收入。 有关宽带移动通信容量逼近研究成果“宽带多载波普适MIMO传输与迭代接收技术”获2009年教育部高等学校技术发明一等奖,并于2011年获国家技术发明一等奖。
东南大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 41 42 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1