高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
少通道脑机接口EEG信号的特征提取方法
本发明公开了少通道脑机接口EEG信号的特征提取方法,尤其涉及用于脑机接口的信号处理方法,属于认知神经科学、信息处理相交叉的技术领域。本发明通过基于sin波辅助信号的多变量经验模式分解将少通道EEG信号扩容至多通道,通过将多通道合成信号映射在多维球体上以获取投影极限值瞬时时刻及其对应的通道信号,由投影极限瞬时时刻及其对应的通道信号确定多通道合成信号局域均值,以多通道合成信号及其局域均值的差值为固有模态函数,经过多次迭代计算获得多个固有模态函数。本发明提出的基于sin波辅助信号的多变量经验模式分解有效克
东南大学 2021-01-12
EEG脑电分析软件
产品详细介绍EEG高级数据处理分析模块可以通过可穿戴脑电测量系统采集到与EEG分析相关的脑电信号进行离线处理和分析,结合ErgoLAB人机环境测试云平台可以分析多模态数据同步分析。可对信号进行自由选择、放大、缩小,便于浏览数据;在整体呈现数据的基础上,还可以根据片段、事件、场景三种分割方式进行数据呈现与分析;可导出原始数据、处理后数据和分析后数据;并可导出可视化分析报告。1、信号处理模块EEG信号处理包括High Pass高通滤波(High Pass);低通滤波(Low Pass);以及带阻滤波(Band Stop)。支持自定义设置参数。2、信号分析模块(1)脑地形图分析(Scalp Map):包括EEG信号不同频段下的平均能量值(Average Power )与总能量值(Total Power )的实时可视化结果显示。包含的数据指标如下:Delta(1-4Hz)   δ波,实时显示1-3Hz频段的脑电波Theta(4-8Hz)   θ波,实时显示4-7Hz频段的脑电波Alpha(9-14Hz) α波,实时显示9-13Hz频段的脑电波Beta(14-30Hz) β波,实时显示14-29Hz频段的脑电波Gamma(30-49Hz) γ波,实时显示30-48Hz频段的脑电波Custom    自定义频段,用户可根据研究需要输入特定的整数波段(2)EEG通道分析1)Channel Analysis:通道分析,可针对脑电采集的单通道或全通道的数据进行数据分析。2)Time-Frequency Spectrum:时-频图,展示所选通道在整个实验过程中每个时刻的脑电频率变化,可以通过调整参数区间阈值,改变不同频率对应的颜色。3)Power Spectrum:能量谱图,该图展示了不同频率脑波的能量值。4)数据统计:具体指标包括α、β、γ、θ、δ频段的 Total Power、Power Percent、Average Power、Power Peak、α/β、θ/β、(α+θ)/β、(α+θ)/(α+β)以及θ/(α+β)、SMR频段的Power值。5)可视化Chart与导出数据模块:包括原始数据Raw Data、处理数据Processed、PSD数据以及整体结果报告。
北京津发科技股份有限公司 2021-08-23
电源信号、数据信号和音频模拟信号时分复用的单总线通信系统
本发明公开了一种电源、数据信号、音频模拟信号时分复用的单总线通信系统,包括接在电源/通信总线上的电源模块和至少两个通信模块,电源/通信总线的始端和终端分别跨接一个阻抗匹配电阻,通信模块包括:整流稳压电路、数据信号发送电路、数据信号接收电路、音频模拟信号发送电路、音频模拟信号接收电路和通信控制电路。本发明的总线供电通信系统电路结构简单,大大简化了电路的复杂度并降低了成本。在构成多节点总线通信方式时,支持主从通信和对等通信。
浙江大学 2021-04-11
城市交通信号控制和优化系统
研究了中心控制和优化软件。结合用户的需求和比较现有软件,开发了灯组定义、相位定义、相位序列定义、相位配时模块。信号机直接以以太网连网,通讯模块负责接收信号机的各项参数,并发送指定的相应数据。进行了配时优化研究。在优化时采用固定周期的方法,相位的绿信比作为优化变量进行优化。
东南大学 2025-02-08
TDCS差分传输信号发送方法和信号接收法
利用第一频谱遮罩序列和第一随机相位复序列,获得第一频域基础波形矢量;通过对第一频域基础波形矢量进行快速傅里叶逆变换,获得时域基础调制波形;将时域基础调制波形作为第一路基础调制波形,将时域基础调制波形进行虚数变换后作为第二路基础调制波形;将待传送的比特数据取k位后,再依照最右位最高位原则,获得所述k位待传送的比特数据的十进制映射值;随机获取第一十进制数和第二十进制数;通过移位循环调制,获得第一路调制波形和第二路调制波形;将第一路调制波形和第二路调制波形进行合成,获得发射信号,利用正交频分复用发射模块将发射信号进行发射。
电子科技大学 2021-04-10
导航信号调制技术
已有样品/n该项目提供了一种导航信号调制技术,可以实现在两个相邻频带传送不同的导航业务,每个导航业务包含数据通道和导频通道,每个子带的导航信号可以独立接收,也可联合接收上下边带信号获得高精度导航性能。在同类解决方案中,最具代表性的是CNES 提出的AltBOC 调制方式。与AltBOC 相比,该项目的基带波形转换速率从子载波的8 倍降低至4 倍,子载波的电平数从4 电平下降至2 电平,信号的生成和接收处理复
华中科技大学 2021-01-12
教学信号发生器
宁波浪力仪器有限公司(余姚市朗海科教仪器厂) 2021-08-23
学生信号发生器
宁波浪力仪器有限公司(余姚市朗海科教仪器厂) 2021-08-23
General通用信号分析软件
产品详细介绍通用信号数据处理与分析ErgoLAB生理测试云平台,除针对EMG、EDA、HRV、RESP信号的专业处理与分析软件之外,还提供了General基础通用信号分析软件,如生物力学信号、环境信号、皮温SKT、眼电等,该分析模块默认为一般化的处理方式,可满足基本的信号处理与分析统计。其他信号如生物力学信号、环境信号、其他生理信号、眼电信号等可在 General 一般性分析模块中进行处理与分析。该模块可以结合人机环境同步平台和生理记录系统采集到的所有生物信号进行离线处理和分析。可对信号进行自由选择、放大、缩小,便于查看数据,在整体呈现数据的基础上,还可以根据片段、事件、场景三种分割方式进行数据呈现;可导出ASCII格式的原始数据、处理后数据和分析后数据;并可导出分析报告单。技术要求:  1、信号处理模块包括基础滤波,包括高通滤波(High Pass)、低通滤波(Low Pass)和带阻滤波(Band Stop);滑动滤波(Smooth),包括滑动均值滤波Moving Average、高斯滤波Guass和Hann窗;Scale变换,包括线性变换(Liner Transform)、指数变换(Power Transform)和绝对变换(Absolute Transform)3种,以及数据降采样(Resample)。手动信号校正方法包括线性插值(Linear interpolation)、样条差值(Spline interpolation)以及通过复制信号区域进行插值。2、信号分析模块信号分析包括时域分析和频域分析,且可时域分析、频域分析自由切换。A.时域分析是将生物信号看作时间的函数,通过分析得到生物信号随时间变化的统计特征。其统计分析指标包括:包括最大值(Max)、最小值(Min)、均值(Mean)、标准差(STD)、最大最小值差(Range)、方差(Variance)。B.频域分析是运用参数模型法和直接傅里叶变化(FFT)将时域分析信号转换为频域分析信号,对信号进行功率谱密度分析,从功率谱密度中确定生物信号的频带。具体包括中值频率(Median Frequency)与均值频率(Mean Frequency)。3、可视化Chart与导出数据模块:包括原始数据Raw Data、处理数据Processed、PSD数据以及整体结果报告。
北京津发科技股份有限公司 2021-08-23
一种通过scout ESI和CNN解码EEG运动想象四分类任务的新方法
导读东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法,以对运动想象(MI)任务进行分类。ESI技术采用边界元法(BEM)和加权最小范数估计(WMNE)分别解决EEG的正向和逆向问题。然后在运动皮层中创建十个scout来选择感兴趣的区域(ROI)。研究者使用Morlet小波方法从scout的时间序列中提取特征。最后,使用CNN对MI任务进行分类。实验结果:在Physionet数据库上的整体平均准确率达到94.5%,分别对左拳头、右拳头、双拳和双脚的单个准确率达到95.3%、93.3%、93.6%、96%,采用十倍交叉验证进行验证。研究人员表示,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者为验证方法的有效性,加入了4个新的受试者进行验证,发现总体平均准确率为92.5%。此外,全局分类器适应单一对象,整体平均准确率提高到94.54%。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。系统框架图1 系统框架图系统框架如图1所示。原始数据来自国际10-10系统的64个电极(不包括Nz、F9、F10、FT9、FT10、A1、A2、TP9、TP10、P9和P10电极),并以每秒160个样本的速度采集。根据国际10-10系统从64个通道采集原始脑电图,并使用BCI2000系统进行记录。记录的数据被分为四个独立MI任务包括左拳MI,右拳MI,双拳MI和双脚MI。首先,由于ERD在执行运动想象时在alpha和beta中不同,因此使用FIR滤波器对EEG进行了8 Hz至30 Hz的带通滤波。然后,通过计算包含正问题和逆问题的源,将传感器空间的活动转化为源空间的活动。接下来,创建scout并提取特征。研究者在运动皮层中创建了10个scout,因为我们只关心与运动相关的活动。十个scout中的每一个都代表了可用源空间中的一个感兴趣的区域(ROI),并且是定义在皮层表面或头部体积上的偶极子的子集。左脑的scout称为L1、L2、L3、L4、L5,右脑的scout称为R1、R2、R3、R4、R5。利用JTFA从10个scout的源时间序列中提取特征。最后,利用CNN对时频图进行分离并进行分类。实验在实验中,研究人员仅使用了随机选择的十个受试者的MI trail (S5,S6,S7,S8,S9,S10,S11,S12,S13,S14)。这里用于分析的数据集包含每个受试者84次试验,每一类包含21次试验。在记录64通道脑电图时,受试者执行了不同的运动想象任务。每个受试者针对以下四个任务中的每一个执行了3轮21试验:当目标出现在屏幕左侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕的右侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕顶部时,受试者想象打开和合上双手的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕底部时,目标会想象双脚张开和合拢,直到目标消失。然后受试者放松。为了统一数据维数,研究者选择了4s的数据,因为每次想象任务的执行时间都在4s左右。此外,脑电图任务是分开的,研究人员在实验中将左拳,右拳,双拳和双脚MI任务分别称为T1,T2,T3和T4。图2 scout命名左右运动想象的scout分别命名为L1、L2、L3、L4、L5、R1、R2、R3、R4、R5,如图2所示。10个scout每一个都被扩展到40个顶点,每个顶点只有一个源。L1区域对应40个信号,其他scout也一样。在计算了来源后,研究者在运动皮层中创建了十个scout,如图3所示。图3 创建10个scout使用ESI计算十个受试者(S5、S6、S7、S8、S9、S10、S11、S12、S13、S14)每次试验的四个任务(T1、T2、T3、T4)的源。对于这四项任务中的每一项,每个受试者每次都要进行7次测试(#1,#2,#3,#4,#5,#6,#7)。展示了第一个步的10个被试的10个scout的4项任务的来源。然后提取10个scout的时间序列进行进一步分析。特征提取在计算源之后,研究人员在运动皮层中创建了包含40个源的10个scout,并提取了scout的时间序列。如图4所示为提取R5 scout时间序列作为示例。图的右边显示了R5 scout的时间序列。本文利用小波变换从scout时间序列中提取特征。图4 提取R5 scout时间序列作为示例在这项研究中,研究者提出利用CNN来解决运动想象任务分类的问题。该模型基于Schirrmeister等提出的Deep ConvNet架构,该网络模型由一个六层卷积网络组成,其中两个最大池层和三个全连接层,如图5所示。图5对于Physionet数据库,研究者首先采用Deep ConvNet架构,包括四个卷积层、四个最大池层和一个全连接层。在实验中,研究者依据经验使用两个最大池化层。并尝试了不同数量的卷积层和完全连接层。时频图利用Morlet小波方法得到了scout的特征。对于每个任务,R5 scout的时频图如图6所示。包含时间和频率互补的时频分析方法提供了时域和频域的联合分布信息,清晰地描述了信号频率与时间的关系。图6 R5 scout的时频图显然,只有部分时频映射是红色的,表明每个任务只对特定的频率和时间敏感。由于图的数量比较大,研究者使用CNN来选择和学习这些图中最基本的特征。研究人员随机选择了几个样本,并将一些特征图可视化,作为MI任务的学习表示,如图7所示。图7为了获得有效的结果,将数据集分为90%作为训练集,其余10%作为测试集。首先,将十个受试者的数据集(总共19320个样本)分为17388个样本以训练所提出的CNN模型,以及1932个样本以验证模型的有效性。在实验中,研究者还选择了另外四个受试者的数据集以增加数据集的规模(27048个样本),其中24343个样本是训练集,其他样本是测试集。在选定的scout上对所提出的CNN架构进行了十次训练和测试,以验证所提出模型的鲁棒性。图8(a)显示了10个scout中每个的全局平均精度。图8 统计结果R5的全局平均精度最高,达到94.5%,而L2的全局平均精度最低,为91.3%。对应L1、L3、L4、L5、R1、R2、R3、R4的整体准确率分别为92.4%、92.5%、93.6%、91.9%、93.0%、91.8%、92.1%、92.6%。所有scout的总体精度均在91%以上,标准差均在0.20%以下。图8(b)显示了十个scout中每个scout四个MI任务的组级统计结果及其标准差。一般来说,R5表现的要比其他的好,而L2在迭代2000中表现最差。标准差较小,说明这些精度更接近平均值且稳定。图9 统计结果图9(a)显示了带有标准差的混淆矩阵,说明了group level分类结果。T1、T2、T3和T4的全局平均精度峰值分别为95.3%、93.3%、93.6%和96.0%。R5 scout的四个MI任务中的每一个都如图9(b)所示。通过改变训练集和测试集顺序的10次试验,确定了scoutR5的性能,结果如图10(a)和(b)所示。在10次试验中,scout R5的T1、T2、T3、T4的平均准确率分别为93.3%、93.8%、94.2%、94.1%。换句话说,四个任务中每一个的平均准确率都超过了93%。全局平均准确率为93.7%。10次试验结果表明,该方法对scout R5的分类效果较好。从以上结果可以清楚地看出,R5 scout在四种MI任务的分类中扮演着最重要的角色。因此,选择R5对四个MI任务进行分类。图 10图11. (a)是不同模型的全局平均准确性的比较。可以发现,该研究提出的模型可以达到最大的精度。从图11. (b)不同模型的ROC曲线可以看出提出的模型比其他模型表现更好。©不同模型T1上的精度比较。(d)不同模型T2的精度比较。(e)不同模型T3的精度比较。(f)不同型号T4的精度比较。图11 不同模型的精度比较结论东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法。该方法可以对运动想象(MI)任务进行分类。实验结果表明,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者加入了4个新的受试者进行验证来验证方法的有效性。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。论文信息:A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN
东北电力大学 2021-04-10
1 2 3 4 5 6
  • ...
  • 25 26 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1