高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
自主神经电动模型电动医学模型XM-D009
XM-D009自主神经电动模型   XM-D009自主神经电动模型显示交感神经低级中枢、交感干;交感神经节前和后节纤维的分布规律;副交感神经低级中枢的部位;睫状神经节、翼腭神经节、下颌下神经节、耳神经节等副交感节前纤维的起始和节后纤维的分布;盆内脏神经的分布情况,控制面板上独立的按钮。   一、显示内容: 左边简要显示交感神经与脊神经的关系及交感神经结前纤维发出的部位及其三种方向,右边是主体部分,清晰显示模型的交感神经秘副交感神经的结构特点用其分布。 ■ 演示副交感神经的低级中枢(即脑骶部): 1、脑干四对副交感神经核(又称结前神经元)自上而下,为动眼神经副核、上泌涎核、下泌涎核、迷走神经背核(可分别闪亮)。 ①、动眼神经副核发出结前纤维,随动眼神经,其中副交感神经纤维进入睫状神经(副交感神经结)结后纤维分布二睫状肌和瞳孔括约肌。 ②、上泌涎核发生结前纤维,随面神经,其中副交感神经纤维至翼腭神经结(副交感神经结),结后纤维支配泪腺、鼻腔口腔粘膜的腺体。另一部分结前纤维至下颌下神经结(副交感神经结)结后纤维公布二下颌下腺和舌下腺。 ③、下泌涎核发出结前纤维随舌咽神经其中的副交感纤维至耳神经结(副交神经结)结后纤维分布于腮腺。 ④、迷走神经背核发出台前纤维,随迷走神经至胸腹腔器壁内或附近至副交感神经结,结后纤维分布于相应的器官。 2、骶部副交感:脊髓骶部第2-4节的副交感神经核发出结前纤维骶神经分出副交感神经纤维加入盆从,随盆丛至脏器附近或脏器壁内副交神经结,结后纤维分布于结肠左曲以下的消化管、盆腔脏器及外阴器。 ■ 演示交感神经低级中枢(即胸腰部): 1、白交通支入交感干后有三种去向: ①、进入交感干后,终于相应节段的交感神经结。 ②、进入交感干后往上行、或向下行,并终止于上方或下方的神经结。 ③、进入交感干后,不换神经元既穿出交感干终止于椎前神经结(椎前神经结有肠系膜上神经结、肠系膜下神经结、腹腔神经结、主动脉肥腻神经结)。 上述白交通结前纤维入交感干后的三种去向均可发光显示。 2、交感神经结发出的结后纤维有三种去向: ①经灰交通支(结后纤维返回脊神经分布于躯干四肢的血管、汗腺和竖毛肌(31对脊神经均有灰交通联系)。 ②随动脉行走,在动脉外膜处形成神经丛,并随动脉分布至所支配的器官。 ③示交感神经结的结后纤维直接支配到所支配的器官。   二、技术参数: ■ 尺寸:60×24×85cm ■ 材质:PVC材料+木框   三、标准配置: ■ XM-D009自主神经电动模型:1台 ■ 电源线:1根 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
听觉传导电动模型电动教学模型XM-D012
XM-D012听觉传导电动模型   XM-D012听觉传导电动模型按正常人体为依据,附以灯光演示技术进行设计和制作,可演示听觉传导通路和某些部位损伤后出现的耳聋,其特点是模拟逼真、直观,对听觉传导的教学有实用价格,也便于学生理解。   一、显示内容: ■ 正常听学传导通路开关:声波→处耳道→鼓膜→锤骨→钻骨→镫骨→外淋巴(前座阶→鼓阶)→内淋巴→蜗螺旋器(大)→蜗(大)神经节→蜗腹背侧核(大)(内换元)→上橄榄核(换元)→同侧或对侧上纠→下丘(部分换元)→下丘臂→外侧膝状体(换元)→听辐射→大脑颞叶的颞横回皮质。 ■ 传导性耳聋A:声波→外耳道→鼓膜(鼓腹破坏)听觉不能传入。 ■ 传导性耳聋B:声波→外耳道→鼓膜→听小骨(损坏)听觉不能传入。 ■ 神经性耳聋A:声波→外耳道→鼓膜→听小骨→外淋巴→内淋巴(蜗螺旋器损坏),听觉不能传入。 ■ 神经性耳聋B:声波→外耳道→鼓膜→听小骨→外淋巴→内淋巴(蜗神经损坏),听觉不能传入。   二、技术参数: ■ 尺寸:51×23×86cm ■ 材质:PVC材料+木框   三、标准配置: ■ XM-D012听觉传导电动模型:1台 ■ 电源线:1根 ■ 说明书:1册 ■ 保修卡合格证:1张
上海欣曼科教设备有限公司 2021-08-23
Fortus 380CF 碳纤维3D打印机
        这款打印机为您提供精准的解决方案,非常适合使用高强度和刚度的碳填充尼龙材料,打印可靠的功能性原型、生产零件和结实耐用的模具。尽享Fortus 380CF 3D打印机的生产性能和可靠性,与性能有限的系统(或自动给料)相比,物美价优 Fortus 380CF 碳纤维打印机使用两种材料:FDM 尼龙12 碳纤维材料和ASA材料。 如果您需要碳纤维具有的高强度和刚度,FDM尼龙12CF材料正是良好选择。如果用于快速原型、概念验证或其他无需碳纤维材料、要求较低的应用,选择ASA材料即可。两种材料都可以配合可溶性支撑材料使用,快速、自动移除支撑材料 系统尺寸和重量 129.5 厘米 x 90.2 厘米 x 198.4 厘米 (51 x 35.5 x 78.1英寸) 601 千克(1325磅) 构建尺寸 355 x 305 x 305毫米(14 x 12 x 12英寸) 分层厚度 ASA 0.330毫米(0.013英寸)0.254毫米(0.010英寸)0.178毫米(0.007英寸) 0.127毫米(0.005英寸) FDM尼龙12CF碳纤维材料 0.254毫米(0.010英寸) 精确度 零件精确度为±.127毫米(±.005英寸)或±.0015毫米/毫米(±.0015英寸/英寸),以数值较高者为准。)Z零件精度包括-0.000/+切片高度的额外公差。注意:精度取决于几何形状。可实现的精确度规格来源于95%尺寸产出的统计数据。
深圳市普立得科技有限公司 2021-02-01
KZ-5F-3D 三维冷冻研磨仪
KZ-5F-3D三维冷冻研磨仪是采用特殊三维一体的运行模式,样品在空间呈“∞”字形三维运动,在极短时间内完成样品的破碎,是满足研究院、大学、农业院、生物医药、食品检测等领域的多样品一次性快速处理的专用设备。  三维冷冻研磨仪很大程度避免了核酸的降解和蛋白的变性,研磨过程中产生热量少,对核酸和蛋白质几乎无破坏作用,完整度高,适用于全基因的建库克隆和测序。 可处理的样品种类广泛: a.组织包括根、茎、叶、花、果、种子等样品的研磨破碎; b.适用于各种动物组织包括大脑、心脏、肺、胃、肝脏、胸腺、肾脏、肠、淋巴结、肌肉、骨骼等样品的研磨破碎; c.适用于细胞、微生物的研磨破碎; d.适用于食品、药品成分分析检测的研磨破碎; 采用的是封闭式的一次性离心管,可有效避免样品之间的交叉污染; 实验重复性强,设定相同的研磨频率及时间,可获得相同的研磨效果; 压缩机制冷功能:-40℃至室温; 控温精度:±1℃;
武汉赛维尔生物科技有限公司 2021-12-09
高级综合穿刺仿生标准化病人JC-D111
解剖结构正确,体表骨性标志清楚,关节运动灵活,可添加或替换不同的穿刺模块,可进行腰椎穿刺、髂前上棘骨髓穿刺、胸腔穿刺、腹腔穿刺、静脉穿刺等操作训练。适用于临床医学本科生实习示教、住院医师培训等。 可根据用户需求在此模型身上添加新的穿刺模块。 注:模型充分体现经济价值性,行穿刺功能同时,还可定制克雷氏骨折、根骨骨折等全身各处骨折形式。
营口巨成教学科技开发有限公司 2022-09-07
人工智能3D编程教育教育解决方案
产品详细介绍    该实验室结合图形化编程(Scratch)和代码编程(Python)方式,以【数学知识+信息技术+3D设计+编程】为主要切入点,选用IME3D系列化软件中的3D编程设计软件Scrath3D和Python3D,及其配套的项目制(PBL)基础和主题课程体系,将编程逻辑、3D设计和开源硬件相结合,开展编程式3D设计教育课程和各项活动。 该实验室的课程内容特色: 充分结合所学的数学知识,如圆锥、圆柱、直线/曲线的斜率等基本概念,并将其通过Scratch、Python等编程方式进行3D数学建模,对生活中常见的物品进行模仿设计,使其成为具有一定功能的创意产品 运用Scrtach3D和Python3D设计软件让学生学习3D编程设计的方法,提升学生自主设计能力和联系理解学科知识的能力,在揭示3D建模背后原理的同时,为学生提供理解编程学习的独特平台 完成一定内容学习和尝试后,结合多种设计方法,进行综合运用性的主题作品设计制作,如用数学的方法来测量学校建筑物的高度,分析模型的特点和结果,并利用合适的编程式3D设计软件构建其模型和3D打印完成作品 结合开源硬件,在给定主题的引导下,进行功能分析、3D设计和编程操作,同时利用3D打印成品进行产品组装,实现功能 编程教学软件:
磐纹科技(上海)有限公司 2021-08-23
三维设计与3D打印基础教程
产品详细介绍      随着3D打印技术和设备的普及,三维设计与3D打印有效的结合,为中小学多个学科的课程带来了新颖的教学方法。同时,也丰富了教学内容。本书编者结合自身长期运用三维设计及3D打印的经验,探究一种能够最大限度发挥这两项技术优势的教学方法,为学生提供了一种有趣、易学、实用、可拓展的课程。    本教材分为4个阶段的教学内容,包含日常用品改造设计、生活创新物品设计、科技原理改造实践及创意艺术设计。每个阶段以任务式教学为主导,通过任务式教学调动学生学习积极性。通过实验、反思及拓展的梯进式教学流程,培养学生通过创意和设计解决生活实际问题的能力。    本教材是中国电子学会创客教育专家委员会推荐书目,可以作为3D打印技术辅助创新教学的雏形,为广大创新教育实践老师们提供一种新的教学思路参考。 
磐纹科技(上海)有限公司 2021-08-23
金石Kings大型模型3D打印机厂家
产品详细介绍H系列超能高速度专业级手板模具3D打印机高精度的SLA快速成型技术轻松实现手板模型领域的黄金标准1、KINGS? H系列是专业级的手板模型3D打印机,此系列机型可帮助您降低手板制作成本,还可以在精度、速度、表面质量、材料种类、可靠性、恒定性等方面实现前所未有的提升。2、KINGS? H系列高效系统将SLA光固化3D打印技术发挥得淋漓尽致,所打印的手板模型可用于产品开发、快速模具制造以及最终用途,不仅具有精密的细节特征和卓越的机械性能,而且每个模具的打印成本也远远低于其他3D打印技术。金石三维,未来无限可能。工业级3D打印机领导者,3D打印机、3D打印材料制造商,定制化3D打印技术服务商.http://www.kings3d.com3、KINGS? H系列所采用的德国振镜扫描系统以及智能定位真空吸附涂层系统,大大提高了打印速度,铺层厚度可精准到0.05mm。五款机型满足了不同体积的成型要求,最大可达到800mm*800mm*500mm。4、KINGS? H系列所采用的材料为光敏树脂,金石为您提供了多种材料选择,包括硬料、软料、弹性料、彩色料、透明料、耐高温料、高强度料,这些材料超越了传统塑料的性能,在耐高温、抗拉伸强度以及抗冲击强度方面均有卓越的表现。您的手板模型不在单一枯燥,您可以满足不同客户的需求,获得更大的市场份额和更高的满意度。
深圳市金石三维打印科技有限公司 2021-08-23
金石Kings高精度3D打印机厂家批发
产品详细介绍核心光固化成型软件实现高精度鞋模的量产1、金石三维的高清3D打印机KINGS? S系列,具有超快的打印速度,其构建尺寸专为鞋模而设计,在量产的同时还能保证极其细微的精度,是鞋模公司及鞋企的理想选择。2、这是一款高性能、高效率的3D打印鞋业模机,采用德国振镜高速扫描器,兼具可变光斑技术,迅速填充大轮廓内腔,打印标准40码鞋模中底平均仅需1.05小时,2.98小时打印完整鞋模。3、征对鞋模的特殊性,对设备的参数进行智能优化,采用多项闭环控制算法,保证了机器工作中的稳定性和精确性。打印精度可达0.05mm,全方位360度无死角。4、软件方面,推出“一键转换STL格式”功能插件,节省了大量的前期工作时间和人力成本。真正解决了鞋模行业的痛点,实现了3D打印技术与鞋模领域的完美衔接,为企业带来了更大效益。5、材料方面,硬料保证了低成本的打印,且能用来翻模制作。软料和弹性材料则可打印试穿鞋模,部分高韧性的材料甚至可以打印成品鞋。
深圳市金石三维打印科技有限公司 2021-08-23
Leonar3Do Kit-3D鼠标价格另寻
产品详细介绍购买价格请咨询商家产品简介:Leonar3Do提供了世界上第一个交互式桌面虚拟现实工具,不仅显示3 d,而且能将你带入个人虚拟空间。Leonar3Do具有革命性的发明Bird ——第一个真正的3 d鼠标也适用于家庭用户——在虚拟的空间里,你能同时工作和游戏。硬件设置带有头跟踪护目镜,使得用户拥有最自然的视觉体验——转动你的头部,从不同的角度看物体,你越靠近,物体就会逐渐放大。产品特点:1,不仅进行3D展示,而且能将你带入个人虚拟空间2,Leonar3Do具有革命性的发明Bird ——第一个真正的3 d鼠标也适用于家庭用户3,头跟踪护目能使使用者拥有最自然的视觉体验产品的功能与应用:1, 教育Leonar3 Do 公司正在运用3D技术制造教育产品,并将师生带入设计的程序。只要你戴上3D 眼镜,被称作“Bird”的3D鼠标就能让你与虚拟世界互动。2,游戏体验者感言:“我没有足够的时间用Leonar3 Do创造新物体,但是我有充足的时间注意到许多不同的互动作用和改变物体的方式。一旦你的作品完成,你可以输出你的作品,用任何3D打印机打印或者运用Maya插件编辑你的作品。”3,骨骼难题让我们一起见证一下,你是个多么出色的考古学家!重建恐龙的骨骼。试着将一片片骨骼碎片放回原位。软件将会这样帮助你:系统储存恐龙骨骼的样子,实时查看移动的部分,当这片骨骼经过原位时,它将会自动跳到原位,保持稳定。 4,建立印刷电路板利用虚拟现实技术学习或者教授建立印刷电路板的方法。系统可以识别晶体管的不同部分,帮助你查看这个部分是否符合这个位置。符合位置的部分将会跳到正确的位置,并且保持稳定。 售后支持:电话联系:13601359559QQ:22901791947*24小时电话技术支持
北京炫魔科技有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 47 48 49
  • ...
  • 253 254 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1