高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
RealSafe人工智能安全平台
业界首个针对AI在极端和对抗环境下的算法安全性检测与加固的工具平台“对抗样本”成新型病毒,算法安全问题亟待解决随着人工智能技术的高速发展,人工智能在诸多场景正逐渐替代或协作着人类的各种劳动,它们可以成为人类的眼睛、耳朵、手臂甚至大脑。其中,机器视觉作为AI时代的基础技术,其背后的AI算法一直是各科技巨头和创业公司共同追逐的热点。然而在机器视觉诸多主流应用场景的背后,往往也藏着由技术性缺陷导致的算法安全风险。例如,在一些训练数据无法覆盖到的极端场景中,自动驾驶汽车的识别系统可能出现匪夷所思的决策,危害乘车人的人身安全。从2016年至今,Tesla、Uber等企业的辅助驾驶和自动驾驶系统就都曾出现过类似致人死亡的严重事故。并且这类极端情形也可能被恶意制造并利用,发动“对抗样本攻击”,去年7月,百度等研究机构就曾经通过3D技术打印出能让自动驾驶“无视”的障碍物,让车辆面临撞击风险。而以上攻击之所以能成功,主要是机器视觉和人类视觉有着很大的差异。因此可以通过在图像、物体等输入信息上添加微小的扰动改变(即上述故意干扰的“对抗样本”),就能导致很大的算法误差。此外,随着AI的进一步发展,AI算法模型将运用金融决策、医疗诊断等关键核心场景,这类AI“漏洞”的威胁将愈发凸显出来。近年来,包括清华大学人工智能研究院院长张钹院士、前微软全球执行副总裁沈向洋等均提倡要发展安全、可靠、可信的人工智能以及负责任的人工智能,其中AI的安全应用均是重点方向。而且,AI安全作为新兴领域,在开源社区、工具包的加持下,对抗样本等攻击手段日益变得复杂,相关防御手段的普及和推广却难以跟上。并且对抗样本等算法漏洞检测存在较高的技术壁垒,目前市面上缺乏自动化检测工具,而大部分企业与组织不具备该领域的专业技能来妥善应对日益增长的恶意攻击。从安全测评到防御加固,RealSafe让AI更加安全可控就如网络安全时代,网络攻击的大规模渗透诞生出杀毒软件,RealAI团队希望通过RealSafe平台打造出人工智能时代的“杀毒软件”,帮助企业高效应对人工智能时代下算法漏洞孕育出的“新型病毒”。目前,RealSafe平台主要支持两大功能模块:模型安全测评、防御解决方案。其中,模型安全评测主要为用户提供AI模型安全性评测服务。用户只需接入所需测评模型的SDK或API接口,选择平台内置或者自行上传的数据集,平台将基于多种算法生成对抗样本模拟攻击,并综合在不同算法、迭代次数、扰动量大小的攻击下模型效果的变化,给出模型安全评分及详细的测评报告(如下图)。目前已支持黑盒查询攻击方法与黑盒迁移攻击方法。防御解决方案则是为用户提供模型安全性升级服务,目前RealSafe平台支持五种去除对抗噪声的通用防御方法,可实现对输入数据的自动去噪处理,破坏攻击者恶意添加的对抗噪声。根据上述的模型安全评测结果,用户可自行选择合适的防御方案,一键提升模型安全性。另外防御效果上,根据实测来看,部分第三方的人脸比对API通过使用RealSafe平台的防御方案加固后,安全性可提高40%以上随着模型攻击手段在不断复杂扩张的情况下,RealSafe平台还持续提供广泛且深入的AI防御手段,帮助用户获得实时且自动化的漏洞检测和修复能力。准确度99.99%也难逃被“恶意干扰”,RealSafe高效应对算法威胁 考虑到公众对于对抗样本这一概念可能比较模糊,RealSafe平台特意选取了公众最为熟知的人脸比对场景(人脸比对被广泛用于金融远程开户、刷脸支付、酒店入住登记等场景的身份认证环节)提供在线体验。并且,为了深入研究“对抗样本”对人脸比对系统识别效果的影响,RealAI 团队基于此功能在国内外主流 AI 平台的演示服务中进行了测试。实测证明,“对抗样本”可以极大的干扰人脸比对系统的识别结果,而测试的这几家互联网公司平台开放的人脸比对API或SDK,几乎覆盖了目前市面上很多中小型企业在落地人脸识别应用时的选择,如果他们的人脸比对技术存在明显的安全漏洞,意味着更广泛的应用场景将存在安全隐患。因此,为了帮助更大范围内的企业高效应对算法威胁,RealSafe平台具备以下两大优势:·  组件化、零编码的在线测评:相较于ART、Foolbox等开源工具需要自行部署、编写代码,RealSafe平台采用组件化、零编码的功能设置,免去了重复造轮子的精力与时间消耗,用户只需提供相应的数据即可在线完成评估,学习成本低,无需拥有专业算法能力也可以上手操作。·可视化、可量化的评测结果:为了帮助用户提高对模型安全性的概念,RealSafe平台采用可量化的形式对安全评测结果进行展示,根据模型在对抗样本攻击下的表现进行评分,评分越高则模型安全性越高。此外,RealSafe平台提供安全性变化展示,经过防御处理后的安全评分变化以及模型效果变化一目了然。从数字世界到物理世界 RealAI落地更多安全周边产品随着机器学习模型不断的升级演化,“对抗样本”已经演变成一种新型攻击手段,并且逐渐从数字世界蔓延到物理世界:在路面上粘贴对抗样本贴纸模仿合并条带误导自动驾驶汽车拐进逆行车道、胸前张贴一张对抗样本贴纸在监控设备下实现隐身……因此,除了针对数字世界的算法模型推出安全评测平台,RealAI团队也联合清华大学AI研究院围绕多年来积累的领先世界的研究成果落地了一系列AI攻防安全产品,为更多场景保驾护航。比如通过佩戴带有对抗样本图案的“眼镜”,黑客可以轻易破解商用手机的面部解锁,通过在胸前张贴特制花纹实现在AI监控下的“隐身”,以及通过在车辆上涂装特殊花纹躲避AI对车辆的检测。发现类似新型漏洞的同时,RealAI也推出相应的防御技术,支持对主流AI算法中的安全漏洞进行检测,并提供AI安全防火墙对攻击AI模型的行为进行有效拦截。人工智能的大潮滚滚而来,随之而来的安全风险也将越来越多样化,尤其近年来因AI技术不成熟导致的侵害风险也频频发生,可以说,算法漏洞已逐渐成为继网络安全、数据安全后又一大安全难题。所幸的是,以RealAI为代表的这些顶尖AI团队早已开始了AI安全领域的征程,并开始以标准化的产品助力行业降低应对安全风险的门槛与成本。此次上线RealSafe人工智能安全平台是RealAI的一小步尝试,但对于整个行业而言,这将是人工智能产业迈向健康可控发展之路的一大步。
清华大学 2021-04-10
人工智能实验平台
汇萃人工智能实训平台采用了先进的模块化设计理念,创新性的将 python 编程、机器学习理论和方法、深度学习框架与工具等实验课程与机器人引导、机器视觉实训、人脸识别、语音识别等实践课程融合到一个平台,既有理论知识的学习,更有实践操作的体验。 平台集中展现了当前人工智能技术的主要应用场景,为培养人工智能领域人才的专业技能和素养,构建解决科研和实际工程问题的专业思维、专业方法和专业嗅觉提供了创新性的学习工具。同时,通过调整模块配置,平台还可做为智能制造领域专业训练平台,培养学生具备应对未来制造业及其它领域应用中对各种高速定位、测量、识别及检测等的专业技能要求。 // 输入电源:AC220V±10% 50Hz// 工作环境:温度:-10 ~ 50℃,湿度≤ 90% 无水珠凝结// 外形尺寸:1500mm×900mm×700mm( 长 × 宽 × 高 )// 平台重量:220kg//额定功率:≤ 3.5KW//安全保护:急停按钮,漏电保护 , 光栅保护,接地保护 “一台多用,专业培养、灵活搭载、高效低价”, 这正是汇萃人工智能实训平台的最大特点。
杭州汇萃智能科技有限公司 2021-12-28
人工智能教学实验平台
面向人工智能专业方向理论和实验的云教学平台,融合了Jupyter Notebook实验平台和教学资源中心两大模块。提供开箱即用人工智能编码实验环境,使教学过程高效、便捷。
新大陆教育 2022-06-23
人工智能应用创新实训平台
人工智能应用创新实训平台是一款专为人工智能领域专业学生设计的多功能教学工具,它集科研教学、实验实训和项目实践于一体,提供了一个全面的学习环境。该平台以国产高性能芯片RK3588作为其边缘计算的核心,支持本地化编程开发,使得学习者能够深入掌握人工智能技术。此外,平台还支持PyTorch、TensorFlow、NCNN等多种主流深度学习框架,便于学生进行模型训练和推理实践。 平台内置了丰富的案例资源,包括但不限于MobileNet、Fcn_Resnet、Resnet、Openpose、Unet、Retinaface、Yolov8pose、Yolov11等前沿模型,为学生提供了实际操作和学习深度学习模型的机会。这些内置模型不仅有助于学生理解深度学习算法的实际应用,也为他们的创新项目提供了坚实的基础。通过这样的实训平台,学生能够在实践中深化理论知识,提升解决实际问题的能力。 本平台融合了先进的多模态大模型智能体,并配备了一系列场景化实体组件,包括深度相机、双轴云台、多轴机械臂、微型输送带、工业级相机以及麦克风阵列等。这些尖端设备使得我们能够快速构建智慧工厂、智能分拣、智慧交通、智能家居等多种应用场景。
江苏学蠡信息科技有限 公司 2025-07-15
基于人工智能的视觉智能感知平台
本项目研究面向成渝地区双城经济圈大数据智能产业需求,尤其是对智能制造、公共安全场景提供高效的视频流在线推理和管理平台,研发了一个通用性的智能中台架构,支持视频流和智能模型模块化管理,支持全程可视化操作交互式界面,支持视觉智能感知模型在线推理快速部署,支持感知与识别结果实时推送、预警和报警。
重庆文理学院 2025-02-21
Tempo Talents人工智能科研平台
基于跨行业数据挖掘标准流程CRISP-DM,实现数据的深度挖掘分析,帮助教师与学生发现数据中隐藏的关系及规律,为教师科研提供数据分析探索、模型构建、成果应用的一站式数据挖掘工具,高效开展行业应用研究。平台支持用户通过简单拖拽、低代码的方式快速完成挖掘分析流程构建。同时支持模型自动化构建、模型智能评估,推荐最优模型与算法。 1、极简的建模过程 基于拖拽式节点操作、连线式流程串接、指导式参数配置,用户可以通过简单拖拽、配置的方式快速完成挖掘分析流程构建。平台内置数据处理、数据融合、特征工程、扩展编程等功能,让用户能够灵活运用多种处理手段对数据进行预处理,提升建模数据质量,同时丰富的算法库为用户建模提供了更多选择,自动学习功能通过自动推荐最优的算法和参数配置,结合“循环行”功能实现批量建模,帮助用户高效建模,快速挖掘数据隐藏价值。 2、丰富的分析算法 内置150多个分析算子,包含30余种数据预处理方法,5种数据融合方法、11种常用特征工程,实现数据融合处理与特征构建;包含聚类、分类、回归、关联规则、时间序列、综合评价、协同过滤等7类N种机器学习算法,支持深度学习、集成学习与自然语言处理等人工智能分析方法,满足各类业务科研场景需求。 3、灵活的扩展能力 支持用户编制SQL\R\Python\Java\Scala\Matlab\PySpark脚本实现个性化的算法脚本。自定义算法功能允许用户通过R\Python\Java\Scala基于平台规范封装自主算法并发布形成平台节点,方便用户灵活扩展平台算法节点功能,增强平台的业务适应能力,充分满足不同领域科研的个性化需求。 4、全面的分析洞察 通过丰富详实的洞察内容,帮助用户全方位观察建模过程任意流程节点的执行结果,为用户开展建模流程的改进优化提供依据,从而快速得到最优模型,发现数据中隐含的业务价值。建模分析报告支持在线查看,并且支持下载可编辑Word版本,支持科研报告及相关成果发布应用。 5、全栈科研成果管理与应用能力 分析成果的快速工程化应用,支持模型以调度任务、异步服务、同步服务、流服务及本地化服务包等形式应用,满足工程化的不同诉求。提供统一的成果分类统计及统一管理监测,帮助用户高效便捷地管理成果、利用成果及监测成果。 6、跨平台模型迁移及融合 支持PMML文件的导入和导出,可以实现跨平台模型之间的迁移和融合,利于用户进行历史模型的迁移,实现用户在不同平台的模型成果快速共享,提升各类科研成果的复用性。    
美林数据技术股份有限公司 2022-07-15
人工智能
为中小学校及校外教育机构提供课程整体规划、学习空间创新建设。
造物世界文化传播(深圳)有限公司 2021-01-23
基于人工智能的智能安全管控系统
项目利用新一代的大数据 深度学习技术,实现了加油站现场智能监管系统,具有卸油区智能管控、财务室智能管控、加油区智能管控、现场智能管控、智能分析以及智能考核管理功能,对人员操作合规性进行智能检测与识别 一、项目分类 关键核心技术突破 二、成果简介 项目利用新一代的大数据 深度学习技术,实现了加油站现场智能监管系统,具有卸油区智能管控、财务室智能管控、加油区智能管控、现场智能管控、智能分析以及智能考核管理功能,对人员操作合规性进行智能检测与识别,将以查视频回放的结果型安全管控模式,转变为控制关键作业环节的过程型管控模式,实现了安全关口前移 服务规范管理 智能数字化分析,提高了全站精细化管控能力以及管理层科学决策、信息决策能力。可应用于能源、电力、制造业等与人员安全以及操作流程合规性密切相关的行业。
西南交通大学 2022-09-13
人工智能实验箱
1、产品介绍 本平台融合了先进的多模态大模型智能体,并配备了一系列场景化实体组件,包括人工智能边缘计算平台(RK3588)、深度相机、二自由度云台、多轴机械臂、微型输送机、工业相机以及麦克风阵列等。这些设备使得我们能够快速构建智慧工厂、智能分拣、智慧交通、智能家居等多种应用场景。 平台内置了丰富的案例资源,包括但不限于MobileNet、Fcn_Resnet、Resnet、Openpose、Unet、Retinaface、Yolov8pose、Yolov等热门模型,为学生提供了实际操作和学习深度学习模型的机会。这些内置模型不仅有助于学生理解深度学习算法的实际应用,也为他们的创新项目提供了坚实的基础。通过这样的实训平台,学生能够在实践中深化理论知识,提升解决实际问题的能力。 1.一体式设计,要配套提供键盘、鼠标、电源适配器和实验教具,支持上电即用; 2.提供17寸以上屏幕,分辨率≥1920×1080; 3.安装面板需同时集成机械手臂、2D视觉系统、深度视觉系统、二自由度电动云台、语音模块、嵌入式传感器等组件.  
江苏学蠡信息科技有限公司 2025-07-15
人工智能喉
在清华大学基础研究基金,教育部科技重点项目,教育部清华大学自主研究项目等项目的资助下,掌握了多种传感器的制备工艺,创新性开发出石墨烯人工智能喉,利用多孔石墨烯的优势,制造出一种收发同体,适合穿戴的集成声学器件,有望在未来解决聋哑人的说话难题。 这种集成声学器件,利用石墨烯的热声效应来发射声音,利用石墨烯的压阻效应来接收声音,实现了单器件的声音收发同体。器件使用的多孔石墨烯材料具有高热导率和低热容率的特点,能够通过热声效应发出 100 Hz-40 kHz 的宽频谱声音。其多孔结构对压力也极为敏感,能够感知发声时喉咙处的微弱振动,可以通过压阻效应接收声音信号。因此,这种器件能够准确感知聋哑人低吟、尖叫等特殊声音,并将这种“无含义声音”转换为频率、强度可控的声音,有望在将来转换为预先录制的语言。
清华大学 2021-04-11
1 2 3 4 5 6
  • ...
  • 310 311 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1