高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种 LED 封装玻璃及其制备方法和应用
本发明公开了一种 LED 封装玻璃及其制备方法和应用。封装玻 璃由玻璃基片及附着于其上、下表面的玻璃复合层组成。制备方法是 采用丝网印刷、流延、喷涂等工艺在玻璃基片上下表面涂覆含高温玻 璃颗粒的玻璃浆料层,然后通过控温烧结技术得到具有凸点结构的玻 璃片,具有工艺简单,成本低,适宜规模化生产等特点。将该玻璃片 应用于 LED 封装,玻璃片与 LED 芯片间既可填充硅胶(用于白光 LED 封装),也可不填充硅胶(实现紫外 LED 封装)。由于玻璃片上表面的凸 点结构减小了玻璃与空气界面的全反射,下表面的
华中科技大学 2021-04-14
碳纳米管阵列的制备及其应用研究
发展了水分辅助 CVD 生长高品质碳纳米管阵列的技术,可实现高纯度碳纳米 管阵列的高效生长。制备了碳纳米管阵列负载各种金属氧化物的纳米复合材料, 并用于构建高性能的超级电容器。
上海理工大学 2021-01-12
高选择性吸附树脂生产及其应用技术
吸附树脂是一类多孔性的高分子合成材料,由于合成过程中单体、 交联剂、致孔剂等结构的变化以及合成控制方法的不同,使得吸附树脂的孔结构可有目的的调控,可以适应很多方面的应用要求。 针对分离纯化的目标产物分子结构特点,设计合成高选择性大孔 吸附树脂,弥补现有商品化树脂的不足,所制备的提取物纯度可控, 且可以制备高纯度提取物。 来自天然植物且具有显著生理活性等有效成分,是目前药用研究 和开发的重要原料来源,特别是对于结构复杂而精妙的天然产物活性 成分,从天然植物提纯化仍是其唯一有效的途径。因此建立合适的分 离纯化工艺、开发高效的分离材料就具有重要的意义。此研究成果不 仅丰富了现有吸附树脂的品种,也为天然的药用研究提供了重要的实 验样品,其具有广泛的社会价值和经济效益。 南开大学形成了可对吸附树脂的结构进行设计及合成高选择性 吸附树脂生产的产业化技术和应用技术: 1)天然植物有效成分及单体分离纯化产业化技术 在树脂骨架上引入特殊的功能基团,对天然植物中不同结构的有 效成分具有高的吸附选择性。 用于黄酮类、生物碱类、皂甙类、内酯类、多酚类等提取和纯化。 已工业化的有银杏叶黄酮、甜菊糖、人参皂甙、三七皂甙、长春 碱等提取技术。 建立了银杏叶提取物中黄酮和内酯的树脂法分离工艺,并进了银 杏内酯冻干粉针剂的开发; 分离了汉防己总生物碱中的两种单体生物碱-汉防己甲素和汉 防己乙素,开发了汉防己甲素冻干粉针剂,并已取得国家食品药品监 督管理局颁发的生产批件。 2)中药提取物农药残留及重金属的去除技术 改变了树脂的传统致孔方法,合成了一类孔径较小且均匀的纳米级孔结构吸附树脂,既保持传统吸附树脂高吸附容量,又具备按照分 子尺寸进行精确筛分的能力,用于分子尺寸较大的天然产物有效成分 中分子较小的农药或重金属去除。 3)抗生素、维生素中间体的纯化技术 合成的高孔隙率、孔径均匀的高比表面聚苯乙烯吸附树脂,明显 改善了树脂的传质性能,吸附速度比现有的商品化树脂提高 2-3 倍, 解吸率高于 90%,树脂寿命大大延长。 技术优点:纯化工艺简单、高效、环境友好,避免了大量有毒、 低沸点有机溶剂的使用。 4)新型脱色树脂技术 通过树脂孔结构、骨架结构、脱色基团等的调控,合成了一类脱 色容量大、再生容易的新型脱色树脂,效果良好。 用于天然产物提取、抗生素、维生素等生产。 5)载体树脂(固定化酶载体树脂、纳米簇金属催化剂载体树脂)生 产技术 通过致孔剂、聚合单体、交联剂的调控,合成了一类高环氧基含 量、高使用强度的固定化酶载体树脂。该技术的树脂生产成本远低于 国外进口树脂。已完成了工业化放大和工艺优化。用于固载青霉素酰 化酶,催化青霉素 G 和头孢菌素 G 水解,制备半合成 β-内酰胺类 抗生素所需的中间体 6-PAP 和 7-ADCA。 合成的一类大孔径、高比表面积的新型孔结构的聚苯乙烯吸附树 脂,加载了纳米簇金属催化剂的载体树脂,用于负载纳米级的金属催 化剂,在重氢提取及放射性废水处理中有重要的应用。 6)高容量新型孔结构吸附树脂生产及其处理有机废水技术 具有超高吸附容量、良好的吸附动力学行为等特点。树脂的比表面积达到 1000m2/g 以上。 用于废水中有机物的处理。 7)新型螯合型吸附树脂生产及其阴阳离子选择性吸附技术 对水中不同价态金属离子及阴离子酸根具有选择性吸附能力。 在高盐体系中可吸附水中的多种重金属,而对 Na、K 等离子没 有结合能力,用于海水中重金属的富集或检测。 利用带有交换基团的吸附树脂与阴离子酸根(如 AsO43-等)发 生离子交换达到富集的目的。用于水中有害物质净化处理。 8)耐高温碱性离子交换树脂技术 改变季铵基与树脂骨架的连接方式,合成了耐高温的碱性离子交 换树脂,可在较高的使用温度下稳定使用,大大拓展了碱树脂的应用 范围。 
南开大学 2021-04-13
高粘度硅油的合成及其在香波中的应用
该项目利用 KOH 作催化剂,低粘度二甲基硅油作止链剂,在 170oC 下催化八 甲基环四硅氧烷的开环聚合,制备了运动粘度超过 150 万 mm/s2 的高粘度硅油。 该合成工艺利用脂肪酸作中和剂,使生产工艺更为简便,降低了高粘度硅油的生产成本。选用非离子表面活性剂对合成的硅油进行乳化并制备得到了粒径为5~40μm,平均粒径为 20-30μm 的乳化硅油。该乳化技术表面活性剂用量仅为10wt%,便可得到硅油含量在 50wt%的稳定性优异的乳化硅油。该乳化硅油具有优异的配伍性,应用到二合一香波中可以明显改善头发的梳理性,其调理性能已达到市售的国外香波产品的先进水平。 
江南大学 2021-04-13
天津市级课程思政优秀案例-Python数据分析与应用 - 奥运奖牌数据分析
本思政案例值巴黎奥运会火热举办之际,以奥运会数据为载体,引导学生运用Python的Pandas库进行数据清洗、筛选与聚合分析,并通过Plotly工具实现数据可视化。案例巧妙融合数据分析技能培养与思政教育,通过剖析我国奥运奖牌数据变化,让学生直观感受国家体育事业的蓬勃发展,深切领悟体育强国战略背后蕴含的国家意志与民族精神。同时,鼓励学生从数据中探寻体育精神内核,内化于心、践之于行,涵养积极人生态度与爱国情怀。此外,案例数据可视化呈现国际竞技格局,助学生理解多元包容、拓宽国际化视野,增强民族自豪感与文化自信,实现知识传授与价值引领的有机统一。
天津市大学软件学院 2025-05-21
甘蓝型油菜及其亲本物种白菜和甘蓝TT2基因家族及其应用
本发明涉及基因工程技术领域,特别涉及甘蓝型油菜及其亲本物种白菜和甘蓝TT2基因家族及其应用; 所述白菜透明种皮2的基因家族包括2个成员:BrTT2-l基因和BrTT2-2基因,所述甘蓝TT2的基因家族的 1个成员BoTT2基因,所述甘蓝型油菜TT2基因家族包括3个成员:BnTT2-l基因、BnTT2-2基因和BnTT2- 3基因;芸菱属6个TT2基因之间具有很高的同源性;本发明还公开了上述基因家族在植物分子育种中的应 用,通过反义抑制其在黑籽甘蓝型油菜中的表达后,转基因植株发生了种皮颜色变浅等性状变化,具有创造 转基因黄籽材料的潜力。
西南大学 2021-04-13
甘蓝型油菜及其亲本物种白菜和甘蓝MYBL2基因家族及其应用
本发明涉及基因工程技术领域,特别涉及甘蓝型油菜及其亲本物种白菜和甘蓝MYBL2基因家族及其应 用;所述白菜MYBL2基因家族包括2个成员:BrMYBL2-l基因和BrMYBL2-2基因,所述甘蓝MYBL2基因家 族包括2个成员:B0MYBL2-1基因和BoMYBL2-2基因,所述甘蓝型油菜MYBL2基因家族包括4个成员: BnMYBL2-l基因、BnMYBL2-2基因、BnMYBL2-3基因和BnMYBL2-4基因;芸臺属8个MYBL2基因之间具 有较高的同源性;本发明还公开了上述基因家族在植物分子育种中的应用,通过构建正义超量表达植物载体,转化黑籽甘蓝型油菜品种中双10号后,获得6株转基因植株。与非转基因的外植体对照相比,转基因植 株生长发育正常,但种皮中原花青素等色素减少,同时种皮变薄,形成转基因黄籽性状,是油菜黄籽性状育 种的新资源。
西南大学 2021-04-13
siRNA特异性阻抑DKK-1调控Wnt信号通路抑制糖皮质激素诱发骨质疏松技术
独自拥有 。
四川大学 2016-04-26
青蒿琥酯抗肝纤维化的作用及其应用
青蒿琥酯在体内、外有确切的抗肝纤维化作用,对实验性肝纤维化的效果显著,安全,使用方便,可用于慢性病毒性肝炎及化学毒物等所致的肝纤维化及肝硬化的预防与治疗,应用前景光明
天津医科大学 2021-02-01
一种荧光硅纳米点及其制备方法与应用
本发明公开了一种荧光硅纳米点(SiNDs),它是由硅烷和孟加拉玫瑰红以水热法一步制备得到的。与现有技术相比,本发明所制备的SiNDs具有超高的荧光量子产率(100%),且能实现对哺乳动物细胞溶酶体的长时间特异成像。此外,该SiNDs的溶酶体成像效果不受细胞清洗、固定和透化等影响,具有耐清洗、耐固定和耐透化的优点。同时,该SiNDs还具有制备成本低、合成方法简单、水分散性好、荧光发射峰宽窄、光稳定性好、细胞相容性好、细胞光毒性低等优点,有望成为新型的溶酶体荧光探针。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 372 373 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1