近期,西安交通大学材料学院刘峰教授团队与德国马丁路德·哈勒维腾贝格大学的Carsten Tschierske教授合作,并借助上海同步辐射光源(SSRF)小角X射线散射线站与西安交通大学分析测试中心的小角X射线散射仪,研究了一系列多亲性同系物分子在不同温度下的自组装行为,首次提出了一种新的DD-DG相变路径:将DD结构的四面体节点扭曲得到Fmmm结构的扭曲四面体节点和平面四重节点,进一步在六方P63/m结构中变为扭曲的和非扭曲的三重平面节点,最后得到只有非扭曲三重节点的DG结构。相变过程中结构的配位数(CN)的变化为4-4-3-3。相变过程以能量最低为原则,极小曲面与节点的六边形密排互相竞争,得到具有不同节点形状的四种结构。该研究所提出的全新的DD与DG结构之间相变机制,对从结构和分子层面更深入理解相变过程和进一步调控相变具有重要指导意义。
该研究成果以《在双螺旋二十四面体结构与双金刚石结构的相变中得到具有多样化节点形状的网状相结构》(Network Phases with Multiple-Junction Geometries at the Gyroid-Diamond Transition)为题发表在国际化学领域旗舰期刊《美国化学会志》(Journal of the American Chemical Society)上。
本次优化设计及实验验证工作是对人工智能辅助支持的离心叶轮全三维优化方法的初次验证,试验件的加工由沈鼓完成,试验测试在西安交大-沈鼓研究院800kW试验台上进行。优化所使用的原型叶轮是经过试验验证的大流量系数高性能离心压气机模型级,包括进出口管路、叶轮、无叶扩压器及蜗壳,原型叶轮在设计转速下压缩机整机级效率可达83%。在对离心叶轮进行全三维优化后,在保持压比不低于原型级的情况下,设计转速下的最高级效率提升至86%。这一结果充分表明了基于人工智能辅助的全三维设计优化体系的优越性以及潜在价值。
本次的研究工作也是国际上首次系统地完成具有全三维造型的离心叶轮的气动设计优化及试验验证工作,表明我国的研究团队已经有能力将更加灵活、鲁棒及上限更高的优化方法应用于工程实际,提高各种设计条件下产品的国际竞争力。