北京大学物理学院“极端光学创新研究团队”王剑威研究员和龚旗煌院士领导的课题组,与英国、丹麦、奥地利和澳大利亚的学者合作,实现了硅基集成光量子芯片上的多体量子纠缠和芯片-芯片间的量子隐形传态功能,为芯片上光量子信息处理和计算模拟的应用,奠定了坚实的基础。相关研究成果于近日发表在国际顶级物理期刊Nature Physics(
https://www.nature.com/articles/s41567-019-0727-x
)。
集成光量子芯片技术,结合了量子物理、量子信息和集成光子学等前沿学科,通过半导体微纳加工制造高性能且大规模集成的光量子器件,实现对光量子信息的高效处理、计算和传输等功能。其中,利用硅基平面光波导集成技术的光量子芯片具有诸多独特优势,包括集成度高、稳定性好、编程操控性优越和可单片集成核心光量子器件等,因此被认为是一种实现光量子信息应用的重要手段之一。
A. 硅基量子隐形传态和多光子量子纠缠芯片的示意图,左上角为集成量子光源的电子显微镜图;B. 量子隐形传态的量子线路图;C. 量子纠缠互换的量子线路图;D. GHZ纠缠制备的量子线路图
北京大学研究团队与布里斯托尔大学、丹麦科技大学、奥地利科学院、赫瑞-瓦特大学和西澳大利亚大学科研人员密切合作,在硅基光量子芯片技术和应用方面取得了突破性进展。研究团队发展了一种基于微环谐振腔的高性能集成量子光源,通过硅波导的强四波混频非线性效应,实现了光子全同性优于90%、无需滤波后处理的50%触发效率的单光子对源,达到了对4组微腔量子光源阵列的相干操控,片上双光子量子纠缠源的保真度达到了92%。团队实现了关键的可编程片上双比特量子纠缠门,可以按照功能需要切换贝尔投影测量和量子比特焊接操作,通过量子态层析实验确认了高保真的双比特纠缠操作。
研究团队在单一硅芯片上实现了高性能量子纠缠光源、可编程双比特量子纠缠门,以及可编程单量子比特测量的全功能集成,进而实现了三种核心量子功能模块——芯片上四光子真纠缠、量子纠缠互换、芯片-芯片间的高保真量子隐形传态。通过对两对纠缠光子对进行量子比特焊接操作,团队实现并判定了四比特Greenberger-Horne-Zeilinger (GHZ) 真量子纠缠的存在;通过对两对纠缠光子中各一个光子进行贝尔投影操作,实现了量子纠缠互换功能,使来自不同光子源的光子间产生了量子纠缠;利用两个芯片间的量子态传输和量子纠缠分布技术,实现了两个芯片间任意单量子比特的量子隐形传态,达到了近90%的隐形传态保真度。
团队研制的硅基多光子量子芯片尺寸仅占几平方毫米,比传统实现方法小了约5-6个数量级,不仅达到了器件的微型化,同时具备了单片全功能集成、器件编程可控、系统性能优越等特点,其中量子隐形传态保真度优于已报道的其它物理实现方法。多体量子纠缠体系的片上制备与量子调控技术,为片上量子物理基础研究和片上光量子信息处理传输、量子计算模拟的应用提供了重要基础。
扫码关注,查看更多科技成果