|
北京大学
北京大学 教育部
  • 129 高校采购信息
  • 457 科技成果项目
  • 0 创新创业项目
  • 0 高校项目需求

在量子物理与机器学习研究的进展

2021-04-11 00:00:00
云上高博会 https://heec.cahe.edu.cn
关键词: 量子物理
点击收藏
所属领域:
其它领域
项目成果/简介:

生成模型的研究重点是如何从给定的数据集合中学习到数据的联合概率分布,以及从学习到的概率分布中高效地生成新的样本。研究团队提出将数据的联合分布概率编码成量子多体态的概率幅的模平方。进一步地,他们提出在经典计算机上使用矩阵乘积态(Matrix Product States)来模拟学习的过程。矩阵乘积态的参数,即张量网络的张量元,可以通过类似密度矩阵重整化群(Density Matrix Renormalization Group)的算法进行学习,最终形成一个具有泛化能力的生成模型。这个学习算法结合了量子物理与机器学习各自的优点:它不仅可以利用GPU高效地学习到模型参数,还可以利用张量网络的灵活性动态地调节模型表达能力。此外,与传统的基于统计物理的生成模型(例如玻尔兹曼机)相比,玻恩学习机还具备直接生成无关联样本的强大能力,从而可以高效地生成新的数据。

基于量子态的概率生成模型融合了量子物理与机器学习的思想,是一个崭新的研究领域。玻恩学习机借助量子态内禀的概率解释及其强大的表达能力,意在为机器学习和人工智能提供更为先进的生成模型和学习算法。此外,这类模型在量子信息处理,量子计算以及多体物理中具有应用潜力。展望将来,最令人兴奋的前景应该会是在一台量子计算机上实现玻恩学习机,从而以全新的方法进行概率型的学习和建模。这项工作用使用张量网络模拟量子计算机的运行,向无监督量子机器学习迈近了一步。

作用在一幅MNIST图片上的矩阵乘积态以及它的纠缠谱


项目阶段:
未应用
会员登录可查看 合作方式、专利情况及联系方式

扫码关注,查看更多科技成果

取消