|
清华大学
  • 252 高校采购信息
  • 648 科技成果项目
  • 10 创新创业项目
  • 0 高校项目需求

质子交换膜燃料电池发动机系统设计及控制

2021-04-13 00:00:00
云上高博会 https://heec.cahe.edu.cn
关键词: 燃料电池
点击收藏
所属领域:
其它领域
项目成果/简介:

01. 成果简介

质子交换膜燃料电池具有高比功率、可快速启动、无腐蚀性、反应温度低、氧化剂需求低等优势,是当前燃料电池汽车的首选,然而,针对目前质子交换膜燃料电池系统设计和控制,还存在以下问题:

1. 在考虑零下低温条件下电堆快速暖机的前提下,实现最优增湿效果,是燃料电池系统设计的一个挑战;

2. 由阳极与阴极两侧压差波动造成的燃料电池质子交换膜机械损坏、以及由燃料电池的高电位造成的燃料电池多孔碳纸化学腐蚀,是限制燃料电池寿命的重要因素;

3. 当燃料电池汽车进入隧道或者地下车库等封闭空间时,由于阳极吹扫而被排出的氢气会在该密闭空间上方聚集,产生安全隐患;

本成果提供一种能够实现阳极再循环和阴极排气再循环的燃料电池系统设计,以及相应的气体压力随动控制、气体湿度多模式控制和输出电压钳位控制,可精确控制进入电堆的氢气/空气压力、总流量、温度、湿度和氧含量等参数,具体如下:

1. 燃料电池系统对进气湿度要求较高,只有在最优增湿条件下,才能实现最高输出效率,为了实现对进气湿度的控制,目前主要由外部增湿和自增湿两种系统,前者低湿环境条件下电堆增湿效果较好;后者取消了外部增湿器,加快了零下低温条件下电堆暖机过程。本成果采用阳极+阴极双循环系统,在小负荷工况下,增大阴极循环程度,充分运用阴极生成水对燃料电池进气进行加湿;在中高负荷下降低阴极循环程度,而增高阳极循环程度,避免由于进气流量过大引起的阴极循环泵功率消耗过高的问题。兼顾低湿环境条件下提高电堆增湿效果与零下低温条件下电堆暖机过程,提高电堆效率;

2. 首先,进入燃料电池电堆的气体流量与气体压力存在一定耦合关系,导致阳极与阴极两侧气体压力将随着燃料电池发电系统的输出功率变化而变化,由此引起的阳极与阴极两侧压差波动会对燃料电池内部的质子交换膜产生机械损坏,本成果采用阳极+阴极压力快速随动控制,从而降低由压力波动造成的机械损坏;此外,在怠速或小负荷时,燃料电池的高电位会对燃料电池内部的多孔碳纸造成化学腐蚀,为此,在怠速或小负荷时,本成果通过增大阳极循环程度,降低燃料电池电位,实现对电压的钳位控制,从而降低由高电位引起的化学腐蚀;综上所述,本成果通过阳极+阴极压力快速随动控制和电压钳位控制,延长电堆寿命;

3. 由于氮气和水的浓差扩散作用,燃料电池阳极侧都会出现氮气累积和液态水水淹现象,引起燃料电池性能下降,因此需要定期对阳极侧进行吹扫,将累积的液态水、氮气与未反应的氢气一起排出。本成果在阳极出口处增加了燃料电池小面积单片,用于处理尾排氢气,从而实现燃料电池系统氢气零排放,保障燃料电池系统的运行安全。

 

image.png

燃料电池双循环系统

02. 应用前景

本成果可应用于质子交换膜燃料电池领域。

03. 知识产权

本成果涉及9项发明专利。

04. 团队介绍

项目团队主要研究方向新能源汽车动力系统,团队成员包括欧阳明高、李建秋、杨福源、王贺武、卢兰光、李希浩、徐梁飞、杜玖玉、韩雪冰、冯旭宁等,课题负责人为李建秋,获得国家技术发明二等奖两项,北京市科学技术一等奖一项、中国汽车工业技术发明一等奖一项,论文发表200余篇。项目团队深度参与了中国新能源汽车的战略规划、科技研发、国际合作、示范考核和产业化推进的全过程,培育出多家学生创业型高科技企业,为中国新能源汽车跻身世界先进行列作出了重要贡献。

05. 合作方式

技术许可。

06.联系方式

邮箱: 

zhangyan2017@tsinghua.edu.cn


项目阶段:
产业化应用
会员登录可查看 合作方式、专利情况及联系方式

扫码关注,查看更多科技成果

取消