传统的CCD、CMOS硅基成像器件都不能响应紫外波段的光信号,这是因为紫外波段的光波在多晶硅中穿透深度很小(<2nm)。但是近年来随着紫外探测技术的日趋发展,人们越来越需要对紫外波段进行更深的探测分析与认识。紫外探测技术是继激光探测技术和红外探测技术之后发展起来的又一军民两用光电探测技术。几十年来,紫外探测技术已经逐渐应用于光谱分析、军事、空间天文、环境监测、工业生产、医用生物学等诸多领域,对现代科研、国防和人民生活都产生了深远的影响。特别是在先进光谱仪器方面,国内急迫需要响应波段拓展到紫外的硅基成像器件。硅基成像器件如CCD、CMOS是应用最广泛的光电探测器件。当前最先进的光谱仪器大都采用了CCD或CMOS作为探测器件,这是因为CCD、CMOS具有灵敏度强、噪声低、成像质量好等优点。但由于紫外波段的光波在多晶硅中穿透深度很小(<2nm),CCD、CMOS等在紫外波段响应都很弱。成像器件的这种紫外弱响应限制了其在先进光谱仪器及其他领域紫外波段探测的使用。
在技术发达国家,宽光谱响应范围、高分辨率、高灵敏度探测器CCD已经广泛应用于高档光谱仪器中。上世纪中叶美国Varian公司开发的Varian700 ICP-AES所使用的宽光谱CCD检测器分辨率达0.01nm,光波长在600nm和300nm时QE分别达到了84%和50%;美国热电公司开发的CAP600 系列ICP所用探测器光谱响应范围更是达到165~1000nm,在200nm时的分辨率达到0.005nm.法国Johinyvon的全谱直读ICP,其所用的CCD探测器像素分辨率达0.0035nm,紫外响应拓展到120nm的远紫外波段。
德国斯派克分析仪器公司
的全谱直读电感耦合等离子体发射光谱仪一维色散和22个CCD检测器设计,其光谱响应范围为120-800nm。德国耶拿JENA 连续光源原子吸收光谱仪contrAA采用高分辨率的中阶梯光栅和紫外高灵敏度的一维CCD探测器,分辨率达0.002nm,光谱响应范围为189—900 nm。总而言之,发达国家在宽光谱响应和高分辨率高灵敏度探测器件的研制领域已取得相当的成就。
主要技术指标和创新点
(1) 我们在国内首次提出紫外增强的硅基成像器件,并在不改变传统硅基成像探测器件的结构的基础上,利用镀膜的方法增强成像探测器件CCD、CMOS的紫外响应,使其光谱响应范围拓宽到190—1100nm,实现对190nm以上紫外光的探测。
(2) 提高成像探测器的紫外波段灵敏度,达到0.1V/lex.s。
(3) 增强成像探测器件的紫外响应的同时,尽量不削弱探测器件对可见波段的响应。
(4) 选用适合的无机材料,克服有机材料使用寿命短的缺陷。
紫外探测技术已经逐渐应用于光谱分析、军事、空间天文、环境监测、工业生产、医用生物学等诸多领域,对现代科研、国防和人民生活都产生了深远的影响。特别是在先进光谱仪器方面,国内急迫需要响应波段拓展到紫外的硅基成像器件,该设计与传统CCD、CMOS结合,能满足宽光谱光谱仪器所需的紫外响应探测器的需要。能提高光谱仪器光谱响应范围,在科学实验和物质分析和检测中具有很广的市场前景。
该设计样品能取代传统CCD、CMOS,应用于大型宽光谱光谱仪器上,作为光谱仪的探测器件。将传统光谱仪器的光谱检测范围拓宽到190—1100nm. 实现紫外探测和紫外分析。具有较强的市场推广应用价值。
扫码关注,查看更多科技成果