高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种氨基酸叶面肥料及应用
本发明提供一种氨基酸叶面肥料,由20%—50%复合氨基酸、1%—50%尼克酰胺、10%—20%七水硫酸亚铁、10%—20%尿素、5%—10%硼酸、1%—5%抗坏血酸、1%—5%表面活性剂聚山梨酯80的物料组成,要求pH 5.0-6.0。本发明提供的氨基酸叶面肥料肥效稳定,能显著强化不同基因型水稻籽粒铁营养,平均能使精米中铁含量显著提升15%以上,显著提升精米蛋白质和氨基酸含量,可全面提升稻米营养品质,质优价廉,可在高效生物强化水稻籽粒铁营养,并显著提升稻米营养品质中应用。
浙江大学 2021-04-11
一种从芦根中提取游离氨基酸的方法
本成果以专利形式体现(专利号 201110359068.5 ),芦根具有丰富的营养价值,其中氨基酸是基本营养元素,有特殊的价值。本方法从芦根提取游离氨基酸将有利于食品加工企业从芦根中获得氨基酸。
辽宁大学 2021-04-11
高价值氨基酸生产菌株的合成生物学改造
各种支链氨基酸(如缬氨酸和异亮氨酸)、活性氨基酸(如 γ-氨基丁酸、谷胱甘肽)是目前需求市场巨大的高价值氨基酸,本研究室利用系统生物学和合成生物学最新原理,利用基因工程技术,构建了一序列具有自主知识产权的遗传转化工具,消除了开展代谢工程的制约因素;然后对氨基酸合成关键酶、代谢网络 进行了定向改造和针对性设计;最后系统改造宿主菌细胞膜壁成分,优化辅因子再生和生长效率,最终提升工业菌株产率。 创新要点 针对高价值氨基酸生产菌株,对其合成途径关键酶进行定向改造,赋予抗反馈抑制性性质,强化其转录表达;通过基因敲除优化其整体代谢网络,增大目的产物流量;优化菌株通透性、胞内能荷和氧化还原环境,增强其胁迫抗性和生长性能。 
江南大学 2021-04-11
泌乳奶牛日粮氨基酸平衡关键参数研究与应用
该项目发现了饲草类饲料蛋白各组分中C组分是可以消化利用的,更正了国际上认为饲草类饲料中C组分不能消化利用的观点,为饲料蛋白的高效利用提供了新的理论依据。确定了奶牛常用饲料在小肠可消化吸收利用的氨基酸种类、利用效率,为我国养牛产业提供了常用饲料小肠可消化吸收(实际奶牛机体利用水平的)氨基酸数据库。 揭示了蛋氨酸(Met)和赖氨酸(Lys)缺乏时奶牛生产中乳蛋白合成的代谢机制,为氨基酸在奶牛生产中的平衡应用提供了理论依据。提出了奶牛小肠可代谢10 种必须氨基酸的适宜配比,确定了北方典型日粮泌乳早中期奶牛瘤胃保护蛋氨酸(Met)和赖氨酸(Lys)的适宜添加量分别为74g和190g。提出了以小肠可代谢氨基酸为基础的奶牛日粮应用技术1 套,日粮粗蛋白水平降低2个百分点,提高了日粮中氮的利用率,降低了饲料成本,提高了奶产量和乳蛋白,乳蛋白率平均提高0.15个百分点。减少了奶牛粪尿中氮的排放,降低了对环境的污染。
山东农业大学 2021-04-23
米渣多菌种发酵制备复合氨基酸和短肽营养液
研发阶段/n内容简介:本研究是以发酵、酿造、制糖、制药等工厂的副产品米渣(湿渣蛋白含量35%)为主要原料,采用多菌种发酵的生物工程新技术,将米渣中的蛋白质降解为可溶性游离的复合氨基酸和短肽营养液。该营养液配比合理,不含任何色素和防腐剂,是一种独特的发酵型纯天然保健饮品,色泽为淡黄色,清亮、透明,酸甜可口。该研究选用了多种正交试验法对单、双、多菌种的种子和发酵配养基配方、工艺路线及参数等关键技术进行优选、对比,验证扩大试验,掌握了该技术的关键。据查新检索目前国内外未见有相同工艺产品的文献报道。中试成果
湖北工业大学 2021-01-12
克拉霉素氨基酸盐及制备方法和应用
研发阶段/n内容简介:谷氨酸/天冬氨酸克拉霉素原料药研发,受湖北工业大学重点基金资助业已完成。我们所研制的谷氨酸/天冬氨酸克拉霉素,重点解决了克拉霉素的水溶性和刺激性问题。初步研究工作证明,谷氨酸/天冬氨酸克拉霉素在注射水中溶解度可达60~70mg/mL,刺激性试验表明本品的刺激性小于乳糖酸克拉霉素(西安制药厂)。因此本品的开发得到谷氨酸/天冬氨酸克拉霉素新原料药,可有效提高克拉霉素的体内生物利用度,为克拉霉素的应用提供了新的机遇。本产品获得一项专利,专利号:200410013172.9。
湖北工业大学 2021-01-12
人源氨基酸转运蛋白复合物b0,+AT-rBAT的最新研究成果
b0,+AT-rBAT是人体内的一种氨基酸转运蛋白复合物,属于异源多聚体氨基酸转运蛋白(HAT)家族。异源多聚体氨基酸转运蛋白,由轻链蛋白和重链蛋白构成。b0,+AT是其中的轻链蛋白,负责转运底物。而rBAT是其中的重链蛋白,具有负责轻链蛋白细胞膜定位(即将轻链蛋白“护送”到细胞膜上)和维持轻链蛋白的稳定性的作用。b0,+AT主要分布于小肠和肾脏中。b0,+AT或者rBAT的突变,会诱发胱氨酸尿症,一种先天性遗传疾病。患者尿路中常有胱氨酸结石形成,造成肾绞痛,可引起尿路感染和肾功能衰竭。该病作为一种隐性遗传疾病在人群中的发病率约为1/7000,属于罕见病的一种。研究b0,+AT-rBAT的最新研究成果,揭开了胱氨酸尿症发病的分子机理。复合物的结构和功能,将能帮助我们认识胱氨酸尿症,为可能的治疗方案提供线索。本项研究工作在全世界首次解析了b0,+AT-rBAT的高分辨率电镜结构。结构显示,b0,+AT蛋白与rBAT蛋白首先形成异源二聚体分子,然后两个异源二聚体分子通过rBAT蛋白的相互作用再进一步形成一个二聚体。体外转运实验表明rBAT蛋白对b0,+AT蛋白的转运活性是必需的;也就是说,b0,+AT要正常发挥转运功能,需要有rBAT蛋白的存在。这与周强实验室2019年解析的LAT1-4F2hc复合物相似。LAT1-4F2hc复合物同属HAT家族,其中的4F2hc蛋白是LAT1蛋白发挥转运活性所必需的。同时,该研究也首次解析了b0,+AT-rBAT和它的天然底物精氨酸的复合物的冷冻电镜结构,解释了它的底物识别机制。如果把b0,+AT-rBAT复合物比做生物膜上的一艘船,那么被转运的精氨酸,可以被理解为“货物”。研究人员通过解析b0,+AT-rBAT与底物的复合物的结构,可以了解该“货物”如何加载到船上的——这个过程,即为“识别机制”。在底物结合点附近,科研团队还鉴定出了底物结合位点附近的一个转运调控区域。通过点突变和同位素转运实验,他们证明了该转运调控区域对于b0,+AT-rBAT的转运功能至关重要。西湖大学黄晶实验室采用了分子模拟的方式,亦验证了该区域的重要性。对于b0,+AT-rBAT复合物突变而导致的胱氨酸尿症,基于上述研究,研究团队进一步揭开了该疾病发生的机理。通过分析已解析出的b0,+AT-rBAT的高分辨率结构,研究人员对突变的位点进行了准确定位,并对这些位点进行了体外生化实验的验证。结果显示,b0,+AT-rBAT的关键位点的突变影响了氨基酸转运的活性,造成了胱氨酸尿症。
西湖大学 2021-04-11
一种抗盐胁迫基因 CbCRT1、制备方法以及其编码产物 的氨基酸序列
西北地区的 70%的土地为贫瘠土壤,其中高盐碱土壤又占了近一半,这导致大多数植物很难生存,这就进一步限制了农民的可用耕地面积 (于法稳,2001)。因此,选育具有抗盐特性的作物就变得非常 重要。但是,由于缺乏合理的筛选手段和技术,且随机选育所需的人力物力都十分巨大,目前筛选得到的具有抗盐特性的作物数量很少,且抗性不强。 近些年来,科学家发现了一些能在高盐碱土壤上生长的抗盐胁迫植株,并将该植株中抗盐胁迫相关的基因进行克隆获得具有抗盐胁迫能力的转基因作物
兰州大学 2021-04-14
含有双齿配位基团的氨基酸手性配体、手性催化剂及其对应的制备方法和应用
本发明涉及含有双齿配位基团的氨基酸手性配体、手性催化剂及其对应的制备方法和应用。本发明的手性配体由廉价易得的氨基酸制备,该类手性配体的发展可以提高手性配体的多样性。该类手性配体只需要一步反应即可简单高效地制备手性Ir(III)催化剂。本发明的手性Ir(III)催化剂是在氨基酸骨架中引入双齿导向基团改变氨基酸与Ir的原有配位模式,增强氨基酸对Ir(III)催化剂手性控制能力。首次设计合成出了该类手性Ir(Ⅲ)催化剂,并将该催化剂成功地应用于手性γ‑环内酰胺的高效不对称合成中,选择性高达99%ee,说明该催化剂具有优越的立体控制能力。
南开大学 2021-04-10
结合大环化和聚氨基酸偶联两种策略极大改善蛋白质体内药学活性
基于该实验室所发展的位点特异蛋白质 - 聚氨基酸偶联技术 (J. Am. Chem. Soc. 2016, 138, 10995−11000) ,以干扰素 -α2b (一种抗病毒和抗肿瘤药物)为模型药物蛋白合成了头 - 尾相接的干扰素 - 聚氨基酸大环偶联物,并将其与野生型干扰素, 2 个线型干扰素 - 聚氨基酸偶联物,以及 1 个线型干扰素 -PEG 偶联物平行比较。研究结果表明,无论在细胞实验还是动物实验层面,干扰素 - 聚氨基酸大环偶联物的药学性质均明显优于其他对照组。最为特殊的是,大环偶联物不仅仅具有传统蛋白质 - 高分子偶联物的典型优势如长循环时间和高肿瘤滞留,还有环状多肽药物特有的高肿瘤渗透性。由于这一系列的优异性质,干扰素 - 聚氨基酸大环偶联物最终在多个动物模型中都表现出优异的抗肿瘤活性,其抑制肿瘤生长效果明显优于实验对照组(包括野生型干扰素, PEG 偶联物和线性聚氨基酸偶联物)。
北京大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 95 96 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1