高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
超顺磁性氧化铁纳米颗粒在制备用于治疗神经性疾病的神经磁刺激增强剂中的应用
本发明公开了超顺磁性氧化铁纳米颗粒在制备用于治疗神经性疾病的神经磁刺激增强剂中的应用。一种基于磁性纳米材料和外磁场作用,可实现脑深部神经磁刺激的方法和系统构造。本发明利用超顺磁性氧化铁纳米颗粒的良好相容性和磁场响应特性,将超顺磁性氧化铁纳米颗粒递送到特定脑区,在一个特定外加磁场作用下,磁性纳米颗粒放大磁场效应,刺激周围的神经细胞,实现神经环路的活化,达到治疗一些神经性疾病的目的。
东南大学 2021-04-11
涂附于彩钢板表面的纳米二氧化钛功能性膜 规模化制备关键技术研究
本项目制备了具有低温固化性能的纳米二氧化钛溶胶,利用现代涂布技术,在彩钢板表面涂附具有分解有害物质、抗菌、杀菌、防污、自清洁功能的纳米二氧化钛涂层,使传统的彩钢板具有更广泛的用途和更优异的特性。 纳米二氧化钛光催化剂具有两个最显著的特性:在紫外光照射下具有光催化活性和超亲水性。光催化活性可以分解吸附在表面的一些有机物、有害气体和生物体。超亲水性具有易洗、防污、抗污的能力。如果在彩钢板的表面涂附上具有光催化活性和超亲水性的纳米二氧化钛涂层后,可防止真菌、微生物、霉菌及细菌在钢板表面繁殖,分解吸附在表面的任何有机物,还具有防污,自清洁作用,将适应于电子工业厂房、特殊医用检查室(X射线、磁共振、超声波等),无菌病房和实验室以及一些净化和家电设备,填补了国内空白。这些具有特殊功能的高档次彩钢板在中国的潜在市场很大,很有发展前景。 本研究项目的关键技术和创新点在于如何解决低温固化纳米二氧化钛溶胶的制备、纳米二氧化钛涂层和彩钢板固有涂层之间的结合牢度、膜透明性以及光催化活性之间的矛盾。中试规模的纳米二氧化钛溶胶经过鼎升金属材料有限公司和山东陵县江南净化彩板有限公司在彩钢板上涂布使用后,反应良好。涂布纳米二氧化钛功能膜的彩钢板经过吴江市东吴机械有限责任公司使用后,肯定了本项目所制备的彩钢板具有分解有机物、抗菌、防污、自清洁功能。
华东理工大学 2021-04-13
用Bi/Mo/Co/La/Fe五组分复合氧化物催化剂移动床合成1,3-丁二烯的方法
(专利号:ZL 201510680106.5) 简介:本发明公开了一种用Bi/Mo/Co/La/Fe五组分复合氧化物催化剂移动床合成1,3‑丁二烯的方法,属于化学化工技术领域。本发明将制备好的五组分复合氧化物催化剂置于移动床反应器中,并将混合气导入反应器中,保持一定空速和催化剂床层温度进行反应,得到1,3‑丁二烯产物,反应催化剂逐渐移动至再生反应器,并向移动床反应器中补充新鲜催化剂。本发明采用Bi、Mo、Co、La、Fe和去离子水按照一定摩尔比配置,碱液调节pH值,经浓缩、过滤、干燥、焙烧、冷却后,再通过研磨、筛分得到Bi/Mo/Co/La/Fe。与传统的工艺不同的是:根据本发明,调节催化剂中金属Co、La、Fe的含量就可以制得用于1,3‑丁二烯制备工艺的高活性、高选择性五组分复合氧化物催化剂。
安徽工业大学 2021-04-11
用Bi/Mo/Co/Ce/Fe五组分复合氧化物催化剂移动床合成1,3-丁二烯的方法
(专利号:ZL 201510685135.0) 简介:本发明公开了一种用Bi/Mo/Co/Ce/Fe五组分复合氧化物催化剂移动床合成1,3‑丁二烯的方法,属于化学化工技术领域。本发明将制备好的五组分复合氧化物催化剂置于移动床反应器中,并将混合气导入反应器中,保持一定空速和催化剂床层温度进行反应,得到1,3‑丁二烯产物,反应催化剂逐渐移动至再生反应器,并向移动床反应器中补充新鲜催化剂。本发明采用Bi、Mo、Co、Ce、Fe和去离子水按照一定摩尔比配置,碱液调节pH值,经浓缩、过滤、干燥、焙烧、冷却后,再通过研磨、筛分得到Bi/Mo/Co/Ce/Fe。与传统的工艺不同的是:根据本发明,调节催化剂中金属Co、Ce、Fe的含量就可以制得用于1,3‑丁二烯制备工艺的高活性、高选择性五组分复合氧化物催化剂。
安徽工业大学 2021-04-11
铈氮氟共掺杂二氧化钛光催化剂及 在可见光降解有机污染物中的应用
本发明涉及铈氮氟共掺杂二氧化钛光催化剂及其在可见光降解有机污染物中的应用。采用的技术方案是:铈氮氟共掺杂二氧化钛光催化剂,其制备方法如下:将钛酸丁酯在搅拌下缓慢滴入乙醇和冰乙酸混合溶液中,搅拌均匀后,逐滴加入氢氟酸溶液,搅拌形成透明混合溶液A;将氨水与乙醇混合,加入硝酸铈,调节pH至2,配成溶液B;将溶液B缓慢滴入溶液A中,得到均匀透明溶胶;在空气中放置陈化,得到固体凝胶;干燥后研磨成粉末,置于马弗炉中400~500℃,焙烧40 min~1.5 h,得到铈氮氟共掺杂二氧化钛光催化剂。合成方法简单的,稳定的,形成催化效率高的非金属和金属三掺杂二氧化钛光催化剂。多元素共掺杂催化剂得到的产物在粒径、形貌上与对比单掺杂或双掺杂有较大的不同,多元素共掺杂能大幅度提高催化剂的催化活性,给催化剂的物理性质带来很多优点,如粒径变小,表面积增大,表面具有特殊结构。本发明的目的是为了扩大TiO2的可见光响应范围,减小电子和空穴的复合,从而提高TiO2对太阳能的利用率,提高其可见光催化活性,因此本发明对TiO2表面进行修饰,提供一种在可见光作用下,光催化效果好的铈氮氟共掺杂二氧化钛光催化剂及其制备方法。采用铈氮氟共掺杂二氧化钛光催化照射的方法处理双酚A废水,使其降解率达到99%以上,不完全降解率低于0.5%。
辽宁大学 2021-04-11
电子科技大学基础院李严波教授团队与海外合作者在光电催化水氧化研究方面取得进展
针对载流子表界面复合的问题,研究团队通过在氮化钽薄膜上下界面分别修饰p型的Mg:GaN层和n型的In:GaN层,一方面钝化氮化钽薄膜的界面缺陷,另一方面通过构建异质结提升界面载流子分离能力,实现了最高为3.46%的ABPE,这是目前基于氮化钽光阳极的最高效率值(图)。将体相和界面载流子管理策略相结合,有望进一步提升氮化钽光阳极的效率。
电子科技大学 2022-06-15
安徽大学材料科学与工程学院在金属镍掺杂碳点实现高效稳定的尿素电氧化研究方面取得新进展
基于上述挑战,安徽大学材料科学与工程学院毕红教授课题组首次采用金属镍掺杂碳点(Ni-CDs)作为尿素电氧化的催化剂。
安徽大学 2022-11-07
南京大学地理学科最新成果: 全球陆地生态系统二氧化碳施肥效应时空变化格局
南京大学国际地球系统科学研究所和地理与海洋科学学院张永光教授、居为民教授和陈镜明院士团队在全球变化和陆地碳循环领域取得重要进展。未来全球变暖的速率及陆地生态系统对全球变暖的响应是《Science》杂志列出的未来25年需要解决的125个重大科学问题之一。工业革命以来,人类活动造成大气中二氧化碳(CO2)的浓度持续上升。CO2浓度的不断增加,在通过温室效应导致全球变暖的同时,也提高了植被的光合作用速率(即CO2施肥效应),增加陆地生态系统吸收大气CO2的能力(即碳汇能力),从而减缓全球变暖的速率。研究表明,大气CO2施肥效应是造成近几十年来全球陆地生态系统碳汇显著增加的决定性因素,也是全球变绿的主要驱动因子之一。因此,在全球尺度定量化评估CO2施肥效应,并分析其时空变化格局,有助于准确评估全球陆地生态系统的固碳能力以及其变化趋势、降低未来气候变化预测的不确定性十分重要。 尽管基于控制实验可以在叶片和冠层尺度对CO2施肥效应的机理进行了的研究,但控制实验的数量、空间分布和物种代表性有限,全球尺度CO2施肥效应的时空变化得定量评估尚不清楚。长时间序列遥感观测为全球CO2施肥效应研究提供了数据基础。因此,该研究首先基于系列卫星传感器的观测数据,研制了1982-2015年全球新型植被指数(NIRv)数据,验证其作为全球植被光合作用(总初级生产力,GPP)指示器的可行性;在此基础上,构建了准确评估全球CO2施肥效应的检测-归因模型,揭示了近四十年全球CO2施肥效应的时空变化特征,评价了结果的可能不确定性;最后,结合欧洲ICP Forests等机构提供的欧洲地区叶片氮磷观测和全球陆地水储量等遥感数据,揭示了全球CO2施肥效应时空变化的可能原因。 研究表明,全球CO2施肥效应在近四十年呈现显著的下降的趋势;2001-2015年的全球CO2施肥效应比1982-1996年显著降低。全球超过70-80%的陆地植被区域CO2施肥效应呈现下降的趋势,欧洲、西伯利亚、南美洲和非洲大部以及澳大利亚西部地区尤为明显;在少部分地区CO2施肥效应存在着上升的趋势,例如东南亚部分地区和澳大利亚东部地区。多个生态系统模型同样能够模拟出全球CO2施肥效应的下降趋势,但显著低于基于遥感数据的结果。
南京大学 2021-02-01
第五届教创赛同期活动预告:教师教学能力提升系列交流活动之一 素质教育通识课程教学创新学术活动
弘扬教育家精神 提升通识课质量
高等教育博览会 2025-07-30
国家知识产权局办公室关于重点推进“双五星”专利转化运用 加快实施一批专利产业化项目的通知
“双五星”专利是指在高校和科研机构存量专利盘活系统中,高校和科研机构自评价值为五星级、且有一家及以上企业他评价值为五星级的专利。
国家知识产权局 2025-08-11
首页 上一页 1 2
  • ...
  • 56 57 58
  • ...
  • 976 977 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1