高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
泡沫/蜂窝系列宽带轻质高效吸波材料
随着电子设备的日趋微型化、高频化及高密度集成化,设备内部的传导干扰和电磁辐射干扰等问题尤为突出,引发出的一系列电磁兼容和设备可靠性问题亟待解决。采用宽带轻质高效吸波材料是解决电磁兼容的必由之路。 电子科技大学研制的泡沫和蜂窝系列化宽带轻质高效吸波材料具有低频吸收性能好、重量轻、吸收频段宽等特点。材料系列厚度范围:6mm~55mm;应用频率:2GHz~18GHz,可扩展到0.5GHz~40GHz;吸收率5dB~30dB;体密度:0.07g/cm3~0.12g/cm3。 与美国Laird公司产品相比,在相同厚度的情况下,电子科技大学研制的FLXB-20泡沫吸波材料,面密度降低30%,达到1.4kg/m2,2GHz~4GHz频段内吸收率由5dB提高到10dB;FWXB-12蜂窝吸波材料,吸收率大于10dB,带宽由7~18GHz拓宽到4~18GHz,同时面密度降低40%,达到1.5kg/m2。该成果在材料低频吸收率及面密度等技术指标方面达到国际领先水平。 电子科技大学研制的FLXB泡沫和FWXB蜂窝两类宽带轻质高效吸波材料已在基站天线系统及手机测试箱抗电磁干扰领域得到批量应用(应用单位包括华为技术、中兴通讯、摩比天线、爱立信等),通讯行业对吸波材料的需求日趋明显,尤其是对低频段性能的要求尤为重要,年需求量在20000平方米以上,具有重要的社会效益和十分广阔的市场应用前景。
电子科技大学 2021-04-10
抗直流偏置低温烧结铁氧体材料及应用
成果描述:研发的抗直流偏置低温烧结铁氧体材料主要参数满足: 烧结温度:900度 磁导率:70±10% 磁导率下降到70%时可承载磁场H70%>750 A/m 性能还可根据用户需求适当调节市场前景分析:该材料可广泛应用与LTCC大功率和抗大直流偏置的片式功率电感的研发,市场前景非常好。与同类成果相比的优势分析:国内目前仅有一家山东的公司在研发生产同类型的材料,但其生产材料已全部被深圳顺络电子包销,不对外销售。本成果研发的材料抗直流偏置特性比山东这家公司略有提升,且性能稳定,已完成中试,可实现大批量生产。
电子科技大学 2021-04-10
低成本耐高温纳米隔热保温材料
项目成果/简介:该项目是基于固废为原料的高性能隔热保温材料,包括稻壳硅,赤泥,石膏等。以及污水处理回收后的COD有机物,花生壳等农业固废基于特色低温烧结技术制备的高性能隔热保温材料。优势是成本低,制造工艺简单,可做成板材,涂料及异性件等。解决固废的高附加值利用问题,具有很好的社会经济效益。产品优势:1) 成本低采用特殊烧结技术,烧结温度低于1000度,比普通的隔热材料烧结温度低400度以上,并采用廉价的造孔剂如COD污水回收有机物等作为造孔剂,制造过程简单。2)使用温度范围宽 使用温度超过1300度,主要成分氧化硅,氧化铝,氧化锆,等高温耐热材料,也可石膏,赤泥,稻壳或复合成分,耐热度高。3)强度高,机械力学性能好,制造工艺简单 可以作为毡,板,或各类异性件,成型工艺简单,不需压力成型烧结,材料的烧结强度高,不易破碎。可以作为建筑外墙隔热,窑炉隔热,钢铁冶炼,农业等。图1 低温烧结的硅基致密陶瓷4)隔热性能好 以回收污水有机物作为造孔剂,原位矿化原理合成纳米材料,闭孔气孔率高,隔热性能好。也可直接利用稻壳中的有机固废成分造孔。 图2 稻壳硅基隔热保温材料显微结构项目阶段:项目进展:用于速热陶瓷及金属的隔热保温材料,投产阶段项目目前基于稻壳硅等固废开发了耐热1400度以上的隔热保温材料,用于不锈钢MCH速热电炼炉隔热保温材料立项投产阶段。同时适合用于石墨烯零秒速热陶瓷农业地温恒温系统的隔热保温,及道路化雪材料的底板隔热保温用途。知识产权类型:发明专利技术成熟度:可以量产技术先进程度:达到国际先进水平成果获得方式:独立研究获得政府支持情况:无
天津大学 2021-04-11
高温过滤用多孔材料及制备技术果
高温 TiAl 金属间化合物多孔材料,解决了普通金属多孔材料高温抗氧化、抗酸碱腐蚀性能差,陶瓷多孔材料难以焊接组件化和强度较差等难点,提高了多孔材料的使用性能、扩展了服役环境。本成果涉及反应烧结法制备高性能高温TiAl 合金多孔材料的新技术和多孔材料孔隙形成机理。制备的 TiAl 多孔材料可应用于环保、化工、石油、冶金、矿山、食品、医药及生物等领域作为过滤、分离、隔热、生物骨架及催化剂载体等,对于废气废液净化回收、节能环保等具有重大意义。
北京科技大学 2021-02-01
颗粒材料理论的工程化运用
颗粒材料广泛存在于自然界和人类生活和生产活动中。对其力学性质的研究不仅是当前力学学科的重要基础科学问题之一,也与诸多工程科学技术的发展密切相关,包括沙漠环境下的仿生机器人技术,冲击防护工程,地质灾害防护等。围绕我国探月工程重大项目需求,研究课题组近年来系统开展了与月壤采样密切相关的颗粒物质动态力学性质及其螺旋输动力学行为等方面的研究。研究成果不仅为我国航天工程实现提供了可靠的技术保障,而且在颗粒材料力学理论研究方面取得了一些重要基础性成果。
北京大学 2021-02-01
3D打印陶瓷基复合材料
陶瓷拥有很多有用特性,如高强度、高硬度以及耐腐蚀、耐磨损等优点,缺点是无法轻易制成复杂形状。 3D打印技术能使陶瓷拥有复杂的形状,但陶瓷极高的熔点又限制了这一方法的使用。 目前几项陶瓷的3D打印技术不仅效率低下,且打印出来的产品往往内部缺陷大,无法保证性能,本项目采用选择性激光熔融技术和后续处理工艺可以大幅度提高打印材料的致密性,既能实现材料的复杂结构也保障了材料的各方面的性能。
哈尔滨理工大学 2021-05-04
低成本耐高温纳米隔热保温材料
该项目是基于固废为原料的高性能隔热保温材料,包括稻壳硅,赤泥,石膏等。以及污水处理回收后的COD有机物,花生壳等农业固废基于特色低温烧结技术制备的高性能隔热保温材料。 优势是成本低,制造工艺简单,可做成板材,涂料及异性件等。解决固废的高附加值利用问题,具有很好的社会经济效益。 产品优势: 1) 成本低 采用特殊烧结技术,烧结温度低于1000度,比普通的隔热材料烧结温度低400度以上,并采用廉价的造孔剂如COD污水回收有机物等作为造孔剂,制造过程简单。 2)使用温度范围宽  使用温度超过1300度,主要成分氧化硅,氧化铝,氧化锆,等高温耐热材料,也可石膏,赤泥,稻壳或复合成分,耐热度高。 3)强度高,机械力学性能好,制造工艺简单  可以作为毡,板,或各类异性件,成型工艺简单,不需压力成型烧结,材料的烧结强度高,不易破碎。可以作为建筑外墙隔热,窑炉隔热,钢铁冶炼,农业等。 图1  低温烧结的硅基致密陶瓷 4)隔热性能好  以回收污水有机物作为造孔剂,原位矿化原理合成纳米材料,闭孔气孔率高,隔热性能好。也可直接利用稻壳中的有机固废成分造孔。  图2   稻壳硅基隔热保温材料显微结构
天津大学 2021-05-12
胶原纤维固载金属离子吸附材料
成果描述:电子、汽车、化工、冶金等工业企业每年要排放大量的氟磷砷废水。众所周知,过量的氟将引起“氟骨症”;磷是导致水体富营养化的主要原因之一;而砷是强致癌物质,被列为第一类重点监测的环境污染物。此外,我国许多地区作为饮用水的地下水中其氟磷砷也严重超标,如果直接饮用将严重危害人们的身体健康。 本技术以制革厂的边角料制取胶原纤维,将具有强配位结合能力的无毒金属离子固载在胶原纤维上制备新型吸附材料,该吸附材料将对氟磷砷等无机阴离子等具有较强的吸附能力(见下表)。该吸附材料不仅可用于氟磷砷等无机阴离子的吸附,而且可用于水体中染料、有机物及微生物的吸附。此外,由于该吸附材料为纤维状,吸附是在材料的表面进行,因此该类吸附材料的吸附和解吸速度快。该吸附材料可生物降解,对环境无污染。 该技术已获得两项国家发明专利(A、胶原纤维固载金属离子吸附材料及其制备方法和用途,专利号:ZL2004100401450;B、胶原纤维固载金属离子吸附材料对蛋白质的吸附分离,专利号:ZL200610021271.0)。市场前景分析:主要用于废水中氟磷砷等无机阴离子、染料、表面活性剂等的吸附去除。该类废水约占整个废水量的15-20%,市场需求很大。与同类成果相比的优势分析:与传统吸附剂相比,具有吸附容量大、吸附速度快的优点。吨水处理成本降低50%左右。国际先进。
四川大学 2021-04-10
大尺寸多频段应用BiLuIG单晶薄膜材料
本项目提出了在钆镓石榴石(GGG)衬底上直接外延大口径磁光BiLuIG单晶体的思路,解决我国无大晶格常数掺杂钆镓石榴石(SGGG)晶圆片技术、无铅液相外延大尺寸BiLuIG晶体圆片的不足,突破纯GGG基片上外延超厚(1-20μm)磁光晶体这一难点科学问题。
电子科技大学 2021-04-10
泡沫/蜂窝系列宽带轻质高效吸波材料
随着电子设备的日趋微型化、高频化及高密度集成化,设备内部的传导干扰和电磁辐射干扰等问题尤为突出,引发出的一系列电磁兼容和设备可靠性问题亟待解决。采用宽带轻质高效吸波材料是解决电磁兼容的必由之路。
电子科技大学 2021-04-10
首页 上一页 1 2
  • ...
  • 934 935 936
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1