高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高性能低膨胀铝基复合材料及构件
卫星在轨运行和返回过程中需经历极端高低温环境,构件尺寸的稳定是保证卫星在轨高精度、返回高安全、任务高可靠的关键。针对卫星搭载的某宽带微波载荷与卫星本体材料之间热膨胀系数不匹配极易导致的载荷在轨及返回过程中载荷接收精度不稳定、信息传输不连续等问题。我校陈骏教授团队以原创的负热膨胀技术研发了具有轻质、热膨胀系数低、力学性能优异、尺寸稳定性好的高性能低膨胀铝基复合材料,并研制了系列关键连接内置件、环件等高性能低膨胀构件,首次将负热膨胀技术应用到我国的卫星上,填补了高性能低膨胀金属构件在工程应用领域的空白。该技术使得某宽带微波载荷与卫星本体之间热膨胀匹配性增强、界面应力大幅度减小,保证了卫星在轨与返回过程中信号高精度传输与接收,助力卫星成功返回。 图1 实践十九号卫星成功返回(图片来源国家航天局) 图2 高性能低膨胀铝基复合材料及构件应用于全球首颗可重复使用返回式技术试验卫星(图片来源央视新闻频道)
北京科技大学 2025-05-21
表面具有纳米纤维多孔结构的羟基磷灰石聚酰胺复合生物材料及其制备方法
本发明提供了一种表面具有纳米纤维多孔结构的羟基磷灰石/聚酰胺复合生物材料,该材料由成型基体及覆盖在成型基体表面并与成型基体结合成一体的纳米纤维层组成,所述纳米纤维层中的纳米纤维之间相互交错形成多孔结构,所述成型基体和纳米纤维层均为羟基磷灰石/聚酰胺复合材料。其制备方法如下:羟基磷灰石/聚酰胺复合材料和氯化钙溶解在无水乙醇中形成纺丝液;将成型基体置于接收屏上,采用静电纺丝法将纺丝液纺丝于成型基体上即得。本发明所述复合生物材料有利于细胞及组织的黏附生长,植入体内后容易血管化,与骨组织的结合性能良好。
四川大学 2016-10-12
一种生物可降解的吸油材料
这种生物可降解的吸油材料是利用天然纤维制成的,吸油性能可达到20~40g/g。 该材料的特点是不吸水仅吸油,可以应用于以下领域: 1. 海面油轮船大面积污染的油回收; 2. 建筑物的防水材料; 3. 水厂的进水口防油处理; 4. 公路、大堤等的吸油防水材料; 5. 人体内外的吸油材料。
东华大学 2021-02-01
硅基新一代锂电负极材料制备
项目成果/简介:目前锂离子电池的能量密度已经越来越不能满足其在电动汽车、智能手机和大规模储能方面的应用。锂离子电池的能量密度低主要是因为所采用的正负极材料的比容量较低,尤其是负极材料石墨,其理论比容量为 372 mAh/g。目前研究最多的、最具有商业化前景的负极材料为硅基负极材料,其理论比容量为 4200 mAh/g,是石墨的十倍以上。据招商证券预计,硅基负极材料在 2020 年的市场使用量接近于 5 万吨,销售额接近于 50 亿。 然而硅基材料在充放电过程中较大的体积变化率(>300%)限制了其商业化应用,较大的体积变化导致极片碎裂以及电解液在材料表面持续分解,从而造成其循环性能剧烈下降。另外,硅基材料为半导体,其导电性较差,从而导致硅基负极材料的倍率性能较差。如何解决硅基负极材料这两大缺点是普及硅基材料在锂离子电池应用的关键。 陈永胜教授课题组结合在纳米技术和石墨烯材料领域的专长,经过近 10 几年的研究,采用低成本的原材料、易工业化的工艺技术制备了石墨烯包覆的硅基负极材料,主要技术创新点包括:1)采用独特的、具有自主知识产权的纳米技术将大粒径的硅粉进行纳米化处理,纳米化大大缓解了硅在充放电过程中体积变化的问题,从而从根本上解决了硅基负极材料循环性能差的问题;2)石墨烯包覆则充分发挥了石墨烯导电导热性能好、机械性能优异、电化学性能稳定等特点,改善了材料的锂离子扩散性能和电子导电性,大大提高了功率特性; 14隔绝了硅与电解液的直接接触,抑制副反应造成的电解液分解和材料侵蚀,提高了首次效率,延缓了使用过程中的寿命衰减;进一步减缓了充放电过程中硅的体积变化,维持材料结构的整体稳定性,极大地提升了循环特性。效益分析:陈永胜教授课题组发明的石墨烯包覆硅基负极材料,从制备过程上讲,具有工艺简单、成本低廉、易工业化的特点;从性能上讲,具有比容量高、稳定性好、压实密度大等优点,与高比容量正极组成的锂离子电池的能量密度是当前商业化锂离子电池能量密度的数倍以上。
南开大学 2021-04-11
硅基新一代锂电负极材料制备
目前锂离子电池的能量密度已经越来越不能满足其在电动汽车、智能手机和大规模储能方面的应用。锂离子电池的能量密度低主要是因为所采用的正负极材料的比容量较低,尤其是负极材料石墨,其理论比容量为 372 mAh/g。目前研究最多的、最具有商业化前景的负极材料为硅基负极材料,其理论比容量为 4200 mAh/g,是石墨的十倍以上。据招商证券预计,硅基负极材料在 2020 年的市场使用量接近于 5 万吨,销售额接近于 50 亿。 然而硅基材料在充放电过程中较大的体积变化率(>300%)限制了其商业化应用,较大的体积变化导致极片碎裂以及电解液在材料表面持续分解,从而造成其循环性能剧烈下降。另外,硅基材料为半导体,其导电性较差,从而导致硅基负极材料的倍率性能较差。如何解决硅基负极材料这两大缺点是普及硅基材料在锂离子电池应用的关键。 陈永胜教授课题组结合在纳米技术和石墨烯材料领域的专长,经过近 10 几年的研究,采用低成本的原材料、易工业化的工艺技术制备了石墨烯包覆的硅基负极材料,主要技术创新点包括:1)采用独特的、具有自主知识产权的纳米技术将大粒径的硅粉进行纳米化处理,纳米化大大缓解了硅在充放电过程中体积变化的问题,从而从根本上解决了硅基负极材料循环性能差的问题;2)石墨烯包覆则充分发挥了石墨烯导电导热性能好、机械性能优异、电化学性能稳定等特点,改善了材料的锂离子扩散性能和电子导电性,大大提高了功率特性; 14隔绝了硅与电解液的直接接触,抑制副反应造成的电解液分解和材料侵蚀,提高了首次效率,延缓了使用过程中的寿命衰减;进一步减缓了充放电过程中硅的体积变化,维持材料结构的整体稳定性,极大地提升了循环特性。
南开大学 2021-02-01
一种多孔粘土异构材料的制备方法
本发明公开了一种多孔粘土材料的制备方法。该方法的过程是:首先将脱水干燥后的废弃有机膨润土与共表面活性剂混合反应;再加入中性无机前驱体进行搅拌反应;然后固液分离;固体部分经焙烧去除表面活性剂和吸附的有机物染物,即得到所要求的多孔粘土异构材料。无须常规合成方法中的阳离子表面活性剂与粘土反应步骤,且无须额外添加阳离子表面活性剂。该方法制备的多孔粘土异构材料符合常规方法制备的同类材料的特点,比表面积大,孔分布均匀,孔径介于微孔和中孔之间,空隙有序度高。由于该材料采用成本极低的废弃物为原料,且无须添加阳离子表面活性剂,因而大大降低合成成本,简化制备步骤。
浙江大学 2021-04-11
一种钛酸锂材料的制备方法
本发明公开了一种尖晶石结构钛酸锂材料的制备方法,针对现有材料性能的不足,本发明将Ag、Co、Al、Mg、Zn、Ti、Zr、Si、F的化合物中的一种或几种与纳米二氧化钛一起溶于溶剂后,并与偏钛酸、锂源以及分散剂一起球磨搅拌,同时进行紫外光照射;将磨细并混合均匀后物料烘干后于600-900℃以及一定气氛下恒温加热2-20h,冷却后得到具有晶格掺杂的尖晶石结构钛酸锂材料,所制备材料具有优异的容量、循环和倍率性能。
四川大学 2021-04-11
一种基于智能软材料的沉浮装置
本实用新型公开了一种基于智能软材料的沉浮装置,包括:沉浮腔,所述沉浮腔包括一端具有开口的密封瓶,所述的开口密封有驱动薄膜,沉浮腔内充有气体使驱动薄膜膨出形成可变形空间;沉浮腔内设有:气压传感器,监测沉浮腔内的气压值并传送至控制器;加速度传感器,监测沉浮腔的运动状态并传送至控制器;控制器,接收并处理气压传感器和加速度传感器传送的监测信息,输出控制信息控制驱动薄膜的变形;电源,为驱动薄膜、气压传感器、加速度传感器和控制器提供动力。该沉浮装置体积小,结构简单,控制精度高,并且产生的噪音小。
浙江大学 2021-04-13
一种分级多孔炭材料的制备方法
简介:本发明公开了一种分级多孔炭材料的制备方法,属于炭材料制备技术领域。该方法是以廉价的煤沥青为碳源,采用纳米三氧化二铁为模板,氢氧化钾为活化剂,三者研磨后的混合物转移至刚玉坩埚中,于气氛炉内进行加热以制备电化学电容器用分级多孔炭材料,所得分级多孔炭材料比表面积介于1157~1330m2/g之间,总孔容介于0.69~1.35cm3/g之间,平均孔径介于2.39~4.05nm之间,非微孔孔容占总孔容的比例介于37.7%~65.9%之间,多孔炭产率介于32.6%~52.2%之间。采用本发明方法制得的分级多孔炭作为电化学电容器电极材料,具有很好的稳定性和优异的综合性能。
安徽工业大学 2021-04-13
一种异质多材料增材制造系统
本发明属于增材制造领域,并公开了一种异质多材料增材制造 系统。该系统包括关节臂机器人、打印装置、减材装置和监测反馈装 置,通过采用旋转式多喷头切换打印装置,以多个送丝打印机构旋转 切换的方式进行多材料多工艺实时切换打印,实现了多材料多工艺的 高效 3D 打印成形;双目立体视觉在线实时监测反馈装置及时反馈加工 零部件的层层温度信息及三维轮廓信息并与原始模型对比标定,确定 减材加工时机及相应减材加工参数。通过本发明,高精
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 51 52 53
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1