高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
高性能非制冷红外探测器
芯片
技术成熟度:技术突破 研发团队以设计制备宽光谱超材料吸收器和像元级集成红外探测器为研究主线,在超薄宽带高吸收原理与策略、材料/器件设计与制备方面取得了突破性进展。围绕器件吸收率低、噪声等效温差(NETD)大、集成兼容性差的难题,提出了无损与损耗型介质结合、多模谐振耦合光吸收的思路,获得超薄宽带高吸收率材料;提出将超薄宽带高吸收率材料与非制冷红外探测器像元级集成新思路,获得了宽谱、NETD小、多色探测的非制冷红外探测器,NETD降低3倍,研究成果已在中国兵器北方夜视广微科技应用转化。 意向开展成果转化的前提条件:中试放大及产业化工艺开发资金支持
东北师范大学
2025-05-16
组织
器官
移植辅助工具
本实用新型公开了一种组织器官移植辅助工具,旨在解决现有的组织器官移植工具操作不便,移植过程中伤口较大,愈合缓慢,实验周期长,易感染,易损伤组织器官的不足。该实用新型种植刀和内芯,种植刀包括刀头和刀柄,刀头呈锥状结构,刀头包括两相对设置的刀体,两刀体前端贴合在一起,两刀体后端均弹性连接在刀柄上;种植刀内活动连接有两根拉线,两拉线的前端分别连接在两刀体的前端,两拉线的后端均伸出刀柄外壁,内芯前端设有取物器,取物器包括两相对设置的置物罩,两置物罩前端贴合在一起,两置物罩后端均弹性连接在内芯上,内芯内部活动连接有两条拉绳,两拉绳的前端分别连接在两置物罩的前端,两拉绳的后端均伸出内芯后端。
浙江大学
2021-04-13
人体
解剖挂图
人体
解剖彩色图谱
《人体解剖挂图》第一版自1980年出版发行以来,在全国许多高等及中等医药院校和各种医药卫生学习班的教学中被广泛采用,并得到好评。本挂图曾于1987年获得国家教委颁发的“首届全国高等学校优秀教材特等奖”,这一殊荣是对我们编绘人员的莫大支持和鼓励。 第二版《人体解剖彩色图谱》 在第一版的基础上,重新设计、增绘、修改近80幅图。新增绘的内容:主要是肌肉部分,从而将骨、骨连结和肌肉编绘成一个完整的运动系统;另外,在消化、呼 吸、泌尿生殖和局部解剖等系统中也增绘了若干幅新图。全套挂图仍按运动系统、消化系统、呼吸系统、泌尿生殖系统、循环系统、神经系统、内分泌系统、感觉器 和局部解剖等9个部分,进行编排包装,共计260幅。 为了节省篇幅,本版挂图仍对某些内容采用一图多用的方法予以展示,例如部分血管和周围神经部分,即未作独立的完整系统进行编绘,而是放在“局部解剖”中予以综合展示。因此,使用局部解剖挂图时,请按读者上述编排,依教学需要进行选图。 主要内容: Ⅸ-1 头颈郝右侧面的肌肉、血管和神经(1) Ⅸ-2 头颈部右侧面伪肌肉吨血管和神经(2) Ⅸ-3 头颈部右侧面的肌肉、血管和神经(3) Ⅸ-4 头颈部右侧面的肌肉、血管和神经(4) Ⅸ-5 鼻腔外侧壁及鼻中.6的动脉、神经 Ⅸ-6 腭及聘扁桃体妁动脉:和神经 Ⅸ-7 口腔底的血管和神经 Ⅸ-8 头部的体表投影 Ⅸ-9 面部的间隙 Ⅸ-10 颈深筋膜 Ⅸ-11 颈根部局部解剖 Ⅸ-12 背部的肌肉和神经 Ⅸ-13 脚膜壁的肌肉、血管和神经(1) Ⅸ-14 脚腹肇的肌肉、血管和神经(2) Ⅸ-15 胸主动脉及其分支 Ⅸ-16 纵隔(右侧) Ⅸ-17 腹股沟管(丑) Ⅸ-18 纵隔:(左侧) Ⅸ-19 腹股沟管(2)及腹股沟三角 Ⅸ-20 腹上部器官和腹腔动脉(1) Ⅸ-21 腹上部器官和腹腔动脉(2) Ⅸ-22 十二指肠及胰奉的血管 Ⅸ-23 小肠、大肠和肠系膜上动脉 Ⅸ-24 小肠、大:肠和肠系膜下动脉 Ⅸ-25 膈,腹后肇的肌肉和神经 Ⅸ-26 盆腔的血管(男) Ⅸ-27 盆腔的血管(女) Ⅸ-28 男性会阴的肌肉、血管及神经 Ⅸ-29 女性会阴的肌肉、血管及神经 Ⅸ-30 上肢的皮神经和浅静脉 Ⅸ-31 腋窝的肌肉、血管和神经(直) Ⅸ-32 腋窝的肌肉、血管和神经(2) Ⅸ-33 腋窝断面模式图Ⅸ-35 肩及上臂前面的肌肉、血管和神经(1) Ⅸ-35 肩及上臂前面的肌肉、血管和神经(2) Ⅸ-36 肩及上臂后面的肌肉、血管和神经(1) Ⅸ-37 肩及上臂后面的肌肉、血管和神经(2) Ⅸ-38 前臂前!面的肌肉、血管和神经(1) Ⅸ-39 前臂前面的肌肉、血管和神经(2) Ⅸ-40 前臂前面的肌肉、血管和神经(3) Ⅸ-41 前臂后面的肌肉、血管和神经(1) Ⅸ-42 前臂后面的肌肉、血管和神经(2) Ⅸ-43 肩、肘关节周围的动脉吻合 Ⅸ-44 手掌面的肌肉、血管和神经(1) Ⅸ-45 手掌面的肌肉、血管和神经(2) Ⅸ-46 手掌面的肌肉、血管和神经(3) Ⅸ-47 手背面妁肌肉、血管和神经 Ⅸ-48 手的腱滑膜鞘和筋膜间隙 Ⅸ-49 手部血管、神经的投影 Ⅸ-50 上肢的横断面 Ⅸ-51 下肢的皮神经和浅静脉 Ⅸ-52 大腿前内侧面的肌肉、血管和神经(重) Ⅸ-53 大腿前内侧面的肌肉、血管和神经(2) Ⅸ-54 大腿前内侧面的肌肉、血管和神经(3) Ⅸ-55 肌腔隙、血管腔隙及股鞘 Ⅸ-56 臀部及大腿后面的肌肉、血管和神经 Ⅸ-57 臀部及大腿后面的肌肉、血管和神经(2) Ⅸ-58 小腿前外侧面及足背的肌肉、血管和神经 Ⅸ-59 小腿前外侧面及足背的肌肉、血管和神鲤 Ⅸ-60 小腿后面的肌肉、血管和神经(1) Ⅸ-61 小腿后面的肌肉、血管和神经(2) Ⅸ-62 髋、膝关节周围的动脉吻合 Ⅸ-63 足底的肌肉、血管和神经(1) Ⅸ-64 足底的肌肉、血管和神经(2) Ⅸ-65 足底的肌肉、血管和神经(3) Ⅸ-66 足的腱滑膜鞘 Ⅸ-67 下肢的横断面 http://www.xinman8.com/361.html
上海欣曼科教设备有限公司
2021-08-23
人体
导电
宁波华茂文教股份有限公司
2021-08-23
人体
发电
底座尺寸400*300*70mm,模具一体成型,两端呈弧形,上翘47度,两面四角注塑有1.5mm脚垫,长度25*25mm,仪器整体高度190mm,上面装有两只手形状的触摸电极,尺寸170*130*4mm,一只50uA的电流表,观察发电量大小,探究为什么人体可以发电。
石家庄市艾迪科教设备有限公司
2021-08-23
智能开关
芯片
GaN系列材料具有低的热产生率和高击穿电场,是制作大功率电子器件的重要材料。利用GaN材料制造的功率管拥有承受大电流、耐高压、抗辐射,耐高温而且开关速度快的特点,非常适用于高功率微波器件。随着5G毫米波通信、工业4.0和新一代雷达的发展,这种功率微波器件将会得到更广泛的应用。但是,对于这种半导体器件的负载开关驱动提出了非常高的要求。要求负载开关驱动封装尺寸小,便于大阵列集成。并且对可靠行的要求也极高。智能功率集成电路(Smart Power Inte
南京大学
2021-04-14
高性能专用
芯片
交流伺服系统是跨行业、量大面广、节能效果显著的节能机电产品,几乎渗透到所有用机电领域,是工业、农业和国防建设及人民生活、正常生产和安全工作的重要保证。
南京大学
2021-04-14
智能视觉感知
芯片
1.痛点问题 元宇宙时代三维成像基础设备和数字终端成像及显示设备都将需要革命性的提升。同时,工业智能和基础科学的快速发展也对感知和成像极限提出了更高的需求。 现有的成像技术,即摄像头模组和3D成像模组,存在诸多技术和经济的缺陷,如抗扰动性能差、占据空间大、功耗大、成本高等,特别是随着传感芯片像素数的增加,传统光学成像系统需要多级较大的昂贵镜片才能实现高分辨率的成像性能,很难应用于手机等小型化设备上,不足以适应科技的高速发展。 “智能视觉感知芯片”将达成光学感知的技术革新并有效解决现存问题。通过数字自适应光学技术矫正系统像差和环境像差、实现高速重构目标景物高精度三维信息,进而实现使用普通的低成本小型化单镜片即可实现高分辨率成像,同时该芯片能够适用于不同的光学系统,包括大口径天文成像,实现高分辨率远距离成像,克服大气湍流干扰。 2.解决方案 团队提出“智能视觉感知芯片”概念,该种芯片拥有多项优势:全球领先的4D感知技术,自适应抗干扰;创新的透镜设计方案结合自主知识产权算法,可通过单摄像头模组实现原多摄像头模组功能,大幅降低现有成本、体积和功耗,显著提升分辨率。通过对目标场景进行多维度的密集采样,将多维度的耦合信息解耦,重构傅里叶面的非期望相位分布,实现高速大范围的自适应光学矫正,显著降低光学成像系统尺寸与成本,提升成像效果,同时具备三维深度感知能力。 合作需求 寻求消费电子等领域有相关技术开发、市场推广经验,能推广本技术落地的高科技企业,可以进行深度合作。
清华大学
2022-05-19
智能视觉感知
芯片
1. 痛点问题 元宇宙时代三维成像基础设备和数字终端成像及显示设备都将需要革命性的提升。同时,工业智能和基础科学的快速发展也对感知和成像极限提出了更高的需求。 现有的成像技术,即摄像头模组和3D成像模组,存在诸多技术和经济的缺陷,如抗扰动性能差、占据空间大、功耗大、成本高等,特别是随着传感芯片像素数的增加,传统光学成像系统需要多级较大的昂贵镜片才能实现高分辨率的成像性能,很难应用于手机等小型化设备上,不足以适应科技的高速发展。 “智能视觉感知芯片”将达成光学感知的技术革新并有效解决现存问题。通过数字自适应光学技术矫正系统像差和环境像差、实现高速重构目标景物高精度三维信息,进而实现使用普通的低成本小型化单镜片即可实现高分辨率成像,同时该芯片能够适用于不同的光学系统,包括大口径天文成像,实现高分辨率远距离成像,克服大气湍流干扰。 2. 解决方案 团队提出“智能视觉感知芯片”概念,该种芯片拥有多项优势:全球领先的4D感知技术,自适应抗干扰;创新的透镜设计方案结合自主知识产权算法,可通过单摄像头模组实现原多摄像头模组功能,大幅降低现有成本、体积和功耗,显著提升分辨率。通过对目标场景进行多维度的密集采样,将多维度的耦合信息解耦,重构傅里叶面的非期望相位分布,实现高速大范围的自适应光学矫正,显著降低光学成像系统尺寸与成本,提升成像效果,同时具备三维深度感知能力。 合作需求 寻求消费电子等领域有相关技术开发、市场推广经验,能推广本技术落地的高科技企业,可以进行深度合作。
清华大学
2022-03-03
后量子密码
芯片
作为信息化时代各领域发展的重要基础与保障,信息安全是一个不容忽视的国家安全战略。当今信息安全领域广泛使用的公钥密码体制主要都是基于经典计算机“难以求解”的数学问题所设计构造的。近些年来,随着量子计算技术的快速发展,传统公钥密码体制不再安全。一方面,Shor算法、Grover搜索算法、量子傅里叶变换等算法相继被提出,从理论上证明这些算法在量子计算机上运行可以显著缩短传统公钥密码体制所依赖数学问题的求解时间。另一方面,实际可行的量子计算机技术不断发展,2019年,Google宣布制造出53量子比特的量子处理器“悬铃木”,在绝对零度条件下可以在200秒完成超级计算机1万年的计算任务。在即将到来的“后量子时代”,我们需要更安全的密码体制来保护隐私,也就是后量子密码(Post-QuantumCryptography,PQC)。未来10年商用量子计算机将面世,在量子计算机面前,构造传统公钥密码体制所基于的数学难题将毫无安全性可言,进而依赖密码体制而构建的信息安全系统及各种应用将面临着严峻的安全问题,甚至存在被完全破解的潜在威胁,亟待研究抵御量子攻击的密码体制及其芯片实现技术。 2022年美国政府正式签署安全法案,首次将后量子密码纳入美国国家安全备忘录,同时还提出《量子计算网络安全准备度法案》,旨在指导推动信息安全系统向后量子密码学过渡。2022年9月7日,美国国家安全局(NSA)发布了《商业国家安全算法套件2.0》,其中将入选第三轮抗量子密码标准化选择的CRYSTALS-KYBER(以下简称Kyber)算法列为国家安全系统未来过渡迁移的必备算法。我国也在后量子密码领域积极跟进,参与国际竞争,于2020年发布国内首份量子安全白皮书,广泛布局后量子密码安全技术应用与产业生态。目前后量子密码算法的研究正在逐渐走向成熟与标准化,未来将有数十亿新旧设备完成从传统公钥密码体制向后量子密码算法的迁移过程。在充分考虑安全性能、算法性能、便利性和合规性的前提下,研制出符合国际标准且具有国际竞争力的后量子密码SoC芯片并应用,对于我国加快抢占后量子密码国际领先地位,保障量子时代下的信息安全具有重要意义。 图1 后量子密码在未来信息安全领域的应用 本成果提出一种应用在云计算、数据中心加密中的高性能随机数生成哈希核心算子,实现了具有灵活性和高吞吐量的可配置Keccak核心。该核心可配置为支持多个采样策略,通过高吞吐量随机数扩展发生器新型结构达到11.7Gbps的吞吐率,性能表现为目前世界最高水平。 图2 高性能后量子密码哈希核心算子 在国际上首次提出了具有侧信道SPA攻击防御机制的可配置BS-CDT高斯采样器。该设计基于CDT反演高斯采样算法,通过真随机数发生器和随机化功耗特性的电路结构,采取隐藏相关数据的防御机制,高效获取安全性更好的均匀分布随机数,并可以有效抵御时间攻击和潜在的功耗分析攻击,显著提高安全性。电路采样精度可达112bit,新型多级快速查找表结构极大缩短了概率函数分布表搜索时间,性能相较于同类设计提升近18倍。解决了高精度需求与采样速度不匹配的冲突问题,优化了概率函数分布表的存储资源,灵活划分密码系统中的高斯采样值,并有效加固了后量子密码系统数据前级的侧信道安全性。 图3 多模域计算兼容可重构算术单元 针对后量子密码计算量大,数据复杂的痛难点,优化格数学难题中的数论变换(NTT)算法,实现了一种高性能NTT硬件加速单元。采用双倍位宽乒乓式对称存储结构突破访存限制,改进模乘运算单元关键结构,提高多项式运算的效率,相比同类运算操作下最先进的设计快3.95倍。 图4 灵活指令集型后量子密码安全处理器芯片架构及版图 针对后量子密码算法的多样化计算需求,创新性地提出了一种多模域计算兼容型可重构核心算子,能够配置为不同模域下的关键运算结构,灵活支持Karatsuba、Toeplitz、NTT等运算结构。在配置为NTT结构的运算下,运算性能与美国MIT研究团队在IEEEISSCC发表的相关成果保持国际同步水平,并具备更强的灵活性与通用性。 图5 多模域计算兼容型可重构核心算子 在团队积累多年的后量子密码相关先进技术研究的基础上,在SMIC40nm工艺下实现了两款后量子密码芯片,能够兼容国际最新标准的CRYSTAL-Kyber后量子密码算法。后量子密码Kyber芯片采用了高性能流水线结构的蝶形运算单元及高速NTT运算单元,解决了加解密运算中访问存储器所带来的速度瓶颈问题。灵活指令集型后量子密码芯片采用可编程自定义指令集架构,基于多模域计算兼容的可重构算术单元与可配置多功能哈希/随机采样核心算子,在实现高性能的后量子密码运算的同时提高了芯片的灵活性与适应性。 图6 后量子密码Kyber处理器芯片架构及版图 图7 灵活指令集型后量子密码处理器芯片架构及版图
华中科技大学
2022-09-23
首页
上一页
1
2
3
4
5
6
...
53
54
下一页
尾页
热搜推荐:
1
云上高博会企业会员招募
2
64届高博会于2026年5月在南昌举办
3
征集科技创新成果