高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
人工关节简化模拟磨损试验方法及其试验机
研发阶段/n内容简介:一种人工关节简化模拟磨损试验机,由上、下圆盘、润滑液容器、轴向支撑轴承、内外转动驱动杆、屈伸运动驱动杆、运动连杆、减速箱、重力砝码、驱动马达、工作台、负荷曲线凸轮、负荷杠杆等组成,除重力砝码悬挂在负荷杆杆下位于工作台台面以下外,其余部件均位于工作台台面上,上下圆盘相互垂直接触,下圆盘嵌于润滑液容器中,负荷曲线凸轮与减速箱输出轴的一端连接,减速箱输出轴的另一端通过运动连杆等推动内外运动驱动杆和屈伸运动驱动杆连接,内外运动驱动杆与润滑液容器连接以带动嵌在里面的下圆盘试样作内外转动,
湖北工业大学 2021-01-12
带轴向限制防脱位结构的人工全髋关节假体
本发明提供了一种带轴向限制防脱位结构的人工全髋关节假体,包括髋臼假体,内衬,股骨头假体,内衬位于髋臼假体的凹槽内,股骨头假体头部位于内衬的凹槽内,还包括轴向限制防脱位结构,该防脱位结构贯穿髋臼假体、内衬以及股骨头假体头部的中央部位,将上述三者连为一体且可调节其长度及弹性。使用此带轴向限制防脱位结构的人工全髋关节假体,获得了轴向牵拉作用限制股骨头假体从髋臼假体内脱出,达到减少甚至消除人工全髋关节置换术后发生的髋关节脱位的并发症,并可增加术后髋关节的活动度,对术后患者的日常活动的限制要求降低,结构设计简单,操作便捷,拆卸容易,也有利于人工全髋关节假体松动在翻修时假体的取出。
青岛大学 2021-04-13
工业机器人工作站及生产线集成技术
在各种类型的自动化生产线上,以工业机器人为核心集成适合于不同生产作业的机器人工作站或生产线是目前工业生产自动化的热门发展方向。北京科技大学已经在焊接、涂敷、搬运、装配及特殊作业等方面成功开发出多套工业机器人工作站。用于国内外多家企业,产生了良好的经济和社会效益。下面介绍几种典型的工作站: 用于汽车装配生产线的玻璃涂胶机器人工作站。其组成有机器人及其控制系统、单轴回转变位机、翻转机械手、胶液供给系统、保温室等。这种工作站保证了涂胶的均匀性、一致性、准确的涂敷位置以及优良的生产质量。机器人选用六自由度垂直关节机器人,最大动作半径约R1550mm,重复定位精度±0.08mm。通过在线示教,编制适合不同类型、不同尺寸的工件作业程序,由传感器判别工件型号,调用相应的作业程序,特别适用于多品种工件的混流生产。胶液采用性能优良的单组分湿气固化聚氨脂胶。供给系统由压胶泵、定量泵、胶枪、清枪器、保温室以及控制系统等构成。已在国内若干家汽车生产企业投入5套。 精密钣金焊接机器人工作站:开发出的焊接机器人工作站适用于碳钢、不锈钢和铝材的焊接。工作站由工业机器人、机器人移动滑台、工件位置变换机、夹具体、高品质电焊机、气动系统、电控系统及辅助装置等组成。机器人采用OTC公司的AX–V6L型六自由度垂直关节机器人。焊接电源采用OTC公司DP400型全数字控制脉冲MIG焊机。现已投入生产,提高了工厂的自动化生产水平和产品在国际市场的竞争力,改善了工人的劳动条件,使生产节拍更加稳定、迅速,焊接质量更加可靠,很值得在焊接加工业大力推广。 彩管搬运机器人工作站:大型彩管的特点是体积笨、重量大、温度高。在生产线上的搬运作业必须采用机器人工作站或专用的移载机。机器人工作站主要由机器人、末端执行器、同步装置、气动系统和电控系统等部分组成。开发出的适用于不同作业区的7个机器人搬运工作站投入使用后,运行稳定、可靠,取得了显著的经济和社会效益。这种技术同样适用于其它物品的搬运作业。 轿车挡风玻璃密封胶坝条粘贴机器人工作站:在轿车装配生产线上,使用机器人进行轿车前后挡风玻璃密封胶坝条的粘贴作业,是一项技术难度很大的工作。经过在试验机上的反复试验,现已经成功开发出密封胶坝粘贴末端执行器并用于实际生产。密封胶坝粘贴末端执行器机构简单、可靠,无需独立的驱动装置,适用于粘贴的特殊作业。经过轻量化设计,总重仅有5.8kg,实际生产中选用6自由度,可搬重量为6kg的工业机器人就可满足不同规格的轿车前后挡风玻璃密封胶坝的粘贴。 应用于各种产品的规模化生产,大幅度提高产品的质量和产量。
北京科技大学 2021-04-13
人工智能标准数据库系统建立与应用
人工智能是一项严重依赖数据的技术,数据量的多少会直接影响产品的性能。而医疗数据又具备其特殊性,受到了严格的保护和使用限制。国外由于有健全的数据管理机制和严格的监管,有很多公开数据集,可供研究单位使用,用于推进人工智能技术的发展。这部分公开数据集虽然也可以被我们所使用,但是受到人种差异限制,某些疾病并不适合亚洲人群(比如:欧美人种和亚洲人种存在乳腺类型差异),且欧美疾病发病率和我国也存在差异。我国医疗数据量远远超过国外,但是受到法规等限制,无法进行数据挖掘,严重限制了我国医疗人工智能技术的发展。目前国家鼓励“产、学、研、用”综合发展,也鼓励科技成果转化。但是,医院空有数据,没有技术,无法进行数据挖掘;研究单位和厂家空有技术,缺乏合法高质量的数据,也无法开展相关研究更无从进行产业化。 该项目已获得“人工智能训练标准库的处理与检测方法、系统”发明专利授权(专利号:CN201710546301.8),本专利的目的是能够建立人工智能所需的标准数据库,通过数据和训练库分离和提供标准数据接口的方式,在保证数据安全的前提下,为研发机构和厂家提供研发数据和验证数据,以便促进我国医疗人工智能技术的发展,产生更多原创算法和适合我国国情的产品。
北京大学 2023-02-27
一种人工湿地用多孔基质材料及其制备方法
项目简介 本成果一种人工湿地用多孔基质材料及其制备方法,属于水处理材料技术领域。常 温下,将质量比为 10-20%的粒径 0.5-1.5mm 砂质粘土、5-35%的粒径 5-10mm 沸石、5-10%235 的粒径<10mm 腐木、5-35%的Ⅰ级粉煤灰或Ⅱ级粉煤灰、5-25%的粒径<5mm 铁屑、1-2% 的建筑用减水剂和 10-15%的水搅拌均匀形成混合料;将混合料注入球形或砖形模具中, 在 80-120Pa/mm2 的压力下压制定型,1 小时后脱
江苏大学 2021-04-14
具有再生功能的新一代小口径人工血管
小口径人工血管(直径小于 6 毫米)临床可用于冠状动脉心脏搭桥、血液透析、外周血管疾病治疗等。由于再狭窄发生率高,目前国际上没有产品,临床多采用自体血管。目前我国有 2.9 亿心血管病患者,需求量巨大。人工血管的市场大约 10 亿,目前国外产品占 85%。如美国巴德(Bard)公司聚四氟乙烯血管、以色列尼卡斯特(Nicast)公司聚氨酯人工血管等。目前这些产品主要是大口径人工血管。 本产品是基于血管生物学领域国际知名专家、英国伦敦大学国王学院讲席教授徐清波提出的人工血管构建新理论,采用天然细胞外基质并结合材料修饰技术、构建全新一代具有组织再生功能的小口径人工血管。解决血管表面抗凝血和快速内皮化形成等瓶颈问题。同时可实现血管中膜功能型平滑肌再生,以及血管外膜的血管化与神经化网络构建,达到血管长期通畅并实现血管稳态。 所需条件支持:满足医疗器械研发、生产的 GMP 净化空间(面积小于 100 平米),对设备要求较低,无需购置专用设备。后期主要资金需求包括医疗器械注册检验、临床前实验(动物实验)和临床试验。其中注册检和动物实验需要资金约 100 万,临床试验从一期二期至三期,病例数不断增加,所需资金较大。最终报批获得三类医疗器械注册证,如有资金缺口后期还可进行融资。
南开大学 2021-04-13
人工智能教学实验平台---边缘智联网(eAIOT)综合实验平台
边缘智联网(edge+AI+IOT=eAIOT)综合实验平台是一款集成物联网、嵌入式、移动互联技术、人工智能于一体的高端教学科研实验平台。 整个教学平台包括物联网、嵌入式Linux和人工智能(AI),三个部分互相支撑、互为补充。平台采用多核高性能 AI 处理器,预装 Ubuntu Linux 操作系统与OpenCV计算机视觉库,支持TensorFlow Lite、NCNN、MNN、Paddle-Lite、MACE等深度学习端侧推理框架。 实验平台支持图像处理、语音处理、无线通信、传感器原理、RFID等技术的主流算法及应用。提供完整的配套教学教材,实训案例的源码、开发手册等,满足AI和IOT教学实训、应用开发等需求。 本项目实验平台搭载瑞芯微RK3399处理器,不少于9个无线传感器节点,配备11.6寸高清触摸屏、高清相机模块、7麦麦克风阵列和ODB接口。 硬件系统采用DC12V电源适配器安全统一供电,结构为上下两层一体化设计,上层紧固式安装实验所需硬件(非磁吸式安装),实验所需硬件均平铺安装在一整块底板上,下层收纳放置配套线材、配件等设备。 实验平台支持ZigBee、BLE、lorawan、nbiot、RFID等无线网络通信,支持无线传感器网络、物联网人工智能、嵌入式系统开发、RFID射频识别技术等课程实验。同时配备可私有云和公有云部署的“物联网云平台”,配合多种传感器模块,可完成基于物联网云平台的嵌入式无线传感器综合实验。本平台提供嵌入式深度学习框架Tengine,可完成人工智能实验,包含基于深度学习的目标检测实验、基于深度学习的人脸识别实验,可完成声纹识别门禁实验、AI语音智能家居实验、知识图谱和聊天机器人实验等人工智能实验。
江苏学蠡信息科技有限公司 2023-06-21
宽温度范围连续可调控固态非线性光学开关材料的研究
非线性光学开关材料是非线性光学材料的一个重要分支,指的是在某种外界条件(如:光、热、化学环境变化等)变化下,能够在非线性光学 “开”、“关”两种状态间切换的物质。先前的大多数研究主要集中于液态材料,但其易失谐以及不稳定等特点,使得液态开关材料难以获得实际应用。而固态非线性开关材料具备非线性性质优良、性能稳定、易于调控等优势;但是目前具备固态非线性开关特性的材料却还很匮乏,这是因为其不仅要求其结构构筑基元是强响应非线性活性基团,而且环境变化下具备基元间对称性的可逆重排特性。目前,已经报道的固态非线性开关材料在状态间切换依赖于材料本身的相变温度Tc,正因如此,已报道材料只能在一个固定温度点下使用,这严重限制了固态非线性材料在温度响应方面的应用。 2018年吴立明课题组从理论上预测具不对称性的单氟磷酸根PO3F2-有望成为新的DUV NLO功能基团,并提出氟磷酸盐可作为深紫外非线性光学材料;进而通过实验合成获得(NH4)2PO3F,NaNH4PO3F∙H2O,(C(NH2)3)2PO3F等新型单氟磷酸盐深紫外非线性光学材料,并对其非线性光学性能进行了系统研究。(Chem. Mater. 2018, 30, 7823-7830.)。对其中非线性晶体材料(NH4)2PO3F相变特性深入研究发现:该化合物可在温度变化下发生低温相(P21/n、无非线性信号)和高温相(Pna21、有非线性信号)的相互转变。通过单晶结构表征分析证实,该相转变需要克服氢键网络重排的能垒。基于此,该工作提出,如果能调控(NH4)2PO3F中的氢键结构,有望实现对该化合物相变能垒和相变温度的调控。据此,该工作利用K+与NH4+的半径相似但不存在氢键环境的特点,设计合成了一系列化合物Kx(NH4)2-xPO3F (x = 0.0 – 2.0)。研究表明,随着K+含量x的增加,由于Kx(NH4)2-xPO3F结构中氢键网络不断被削弱,发生相转变所需克服的能垒也逐步降低,在材料性能上则表现为非线性开关激发温度Tc的不断降低。因此,通过调控材料中K+离子的含量,固态非线性开关材料Kx(NH4)2-xPO3F (x = 0 – 0.3)可实现激发温度Tc在270–150 K大温度范围内的连续可调。这是首次实现对固态非线性开关材料激发温度的调控,并且根据K+离子含量的控制,可实现在120摄氏度范围内的宽温度连续可调。通过理论计算高温相与低温相的自由能证实当K+含量高于30%时,由于氢键结构的过度削弱,该相转变消失,这与实验结果相符。该工作系统深入地探究了内部微观结构与宏观非线性光学开关性质之间的内在机制,不仅打破了传统非线性开关局限在特定温度的壁垒,而且为今后研究氢键机制作用下调控宏观性质提供了有益的参考。
北京师范大学 2021-02-01
一维功能纳米材料的控制合成、性能调控及应用研究
半导体纳米线是一种独特的准一维纳米材料。它不仅是电荷的最小载体,也是构建新的复杂体系和新概念纳米器件的基元。在该领域中,新现象和新概念层出不穷,推动着材料、物理、化学等交叉学科的发展,并将对未来电子、光电子、通讯等产业产生重大影响。在这一当今最前沿的研究领域中,国际上尤其是发达国家集中了最精锐的研发力量,以期望在纳米器件的实用化方面有所突破,在未来高科技争夺战中,保持领先并居于主导地位。在纳米研究领域,美国政府仅在2005年就投入10亿美元,而日本在同一年的投入约12亿美元。 我国的《国家中长期科技发展规划纲要》中也已经把纳米科技作为基础研究重大研究计划,列入重点支持范围。其中一维功能纳米材料的控制合成、性能调控及应用研究是目前纳米材料研究的世界热点。 张跃教授承担了973、863、重大国际合作、自然科学基金杰出青年基金和面上项目等各类纳米研究方向的课题,通过创新合成方法、优化合成工艺,实现了多种形貌的一维功能纳米材料的可控制备,利用等多种手段对纳米材料的形貌、结构进行了表征,并对其生长机理、力学性能以及光致发光、场发射、导电性等物理性能进行了系统和深入的研究,特别是在碳纳米管及ZnO纳米阵列的实际应用领域取得了重要突破,其代表性成果包括: 1.改进了ZnO和掺杂ZnO一维纳米材料的制备方法。采用化学气相沉积法,在较低温条件下,通过不同工艺成功制备了纯ZnO及In、Mn、Sn等掺杂ZnO纳米棒、纳米线、纳米带、纳米电缆、纳米阵列、四针状纳米棒、纳米梳、纳米盘等多种形貌结构的纳米材料,实现了一维ZnO纳米材料较低温度条件下形态和尺度控制生长,产物品质纯净、产率高、质量好,易于工业化生产。制备方法受到国际同行的高度评价,认为是半导体制造领域中氧化物纳米结构集成方法的重大进步,不仅对从事纳米材料研究的科学家,而且对半导体产业意义重大。有关双晶ZnO纳米带的论文发表在国际知名期刊Chemical Physics Letters (2003,375:96-101)上,论文被引用60余次,位列该期刊2003至2007年被引用前50名之内。 2.提出了一维氧化锌纳米材料新的生长机理。首次合成四针状纳米氧化锌材料并揭示了该结构的八面体孪晶核生长的理论模型,该研究结果的论文发表在Chemical Physics Letters (2002,358:83-86)上,被他引更是达到了130 余次。首次发现和论证了一维氧化锌纳米结构中的螺旋位错诱导晶体生长机理,观察到了一维氧化锌纳米材料存在的大量螺旋位错、周期性的位错及生长台阶,发现生长是沿着位错进行,且与其伯格斯矢量的方向一致。 3.原位研究单根ZnO和In-ZnO纳米线的力学行为。利用TEM对单根纳米线加载交变电压使其发生共振,原位测量其本征共振频率,通过计算得出氧化锌纳米线的弯曲模量。氧化锌纳米线可以构建纳米悬臂梁和纳米谐振器,通过氧化锌纳米线构建的纳米秤,测量了黏附在纳米线自由端的纳米颗粒质量。该研究论文发表在英国物理协会的期刊J. Phys.: Condens. Matter( 2006, 18 (15), L179-L184)上,被评为该期刊2006年度的顶级论文(Top paper),位列其中第九名,是该年度该期刊22篇Top papers研究论文中唯一由中国研究人员完成的成果。 4.合成了多种ZnS准一维纳米材料,并提出了四针状ZnS纳米结构的生长机理,指出其生长过程由立方相形核和六方相孪晶生长机制共同控制。同时率先报道了ZnS四针状纳米材料的光致发光性能,发光波长相对其它ZnS 纳米材料发生蓝移4.8~32.8nm。该研究论文发表在国际著名期刊Nanotechnology (18 (2007) 475603)上,在发表后的第一个季度内,下载量就超过250次,成为该期刊排名前10%的热点文章。 5.碳纳米管及ZnO纳米阵列的实际应用取得了重要突破。采用涂敷和CVD两种方法成功制备了多种大面积碳纳米管阴极,采用水热合成法制备了大面积一维纳米ZnO阵列阴极。首次研究了纳米阴极的强流脉冲发射性能,其中碳纳米管阴极的发射电流密度高达344 A/cm2,ZnO阴极的发射电流密度达到123A/cm2。系列研究成果发表在Carbon、Appl. Phys. Lett.等国际著名期刊上。研制的多种纳米阴极在线性感应加速器上已经得到成功应用,阴极的发射电流强度及发射电子的均匀性远远高于现有的阴极性能指标。 张跃教授有关纳米材料的研究成果获教育部高等学校科学技术奖(自然科学奖)二等奖1项(2006-052),完成专著1部,另合作出版专著1部,发表论文80 余篇(其中SCI 40余篇、EI 近20 篇),重要成果发表在Appl. Phys. Lett.、Carbon、Advan. Funct. Mater.、 J. Physical Chemistry C、Chemical Physics Letters、J. Phys.: Condens. Matter、J. Physics D: Applied Physics、J. Nanosci. Nanotech.等国际知名期刊上,申报12项发明专利(已授权5项)。发表研究论文中的4 篇代表性论文,已被引用300余次,单篇他引超过130次。
北京科技大学 2021-04-11
大型无机盐结晶器精确调控工程技术与装备
现代结晶技术是无机盐、精细化工品、光电晶体材料、医药、农药、食品添加剂等高端功 能材料的共性科学问题,相关晶体产品是不同行业高端产品中的核心部分,结晶工艺和结晶器 装备开发是结晶技术的重要环节。 华东理工大学资源过程工程研究所具有国际先进水平的结晶过程研究测试仪器与实验装 置:马尔文激光粒度分析仪 (Mastersize 2000) 、颗粒录影显微镜 (PVM) 、聚焦光束反射测量仪 (FBRM) 、平行结晶仪,扫描电子显微镜 (FEI Quanta 250) 、全自动实验室合成反应器 (LabMax) 等,能够对结晶过程进行在线监测和控制、结晶产品的粒度分布、晶体形貌特征进行分析评 价。 研究所还拥有二维激光粒子测速仪PIV以及体三维速度场测试仪V3V,配备相关流体力学 商业软件及自主开发的设计软件系统,能够对结晶器流场进行数值模拟,实现结构与操作参数 的多参数系统优化,开展结晶器设计与工程放大。 研究所建立了一套无机盐大型无机盐结晶器精确调控工程技术与装备的研究方法,通过结 晶过程热力学、结晶过程动力学,结晶工艺优化,结晶装备设计与放大,实现了氯化钾大型结 晶装备的优化、十万吨级反应结晶氢氧化镁等结晶装置成套工艺。 
华东理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 25 26 27
  • ...
  • 47 48 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1