高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于迭代学习的多机械臂变批次协同阻抗控制方法
本发明公开了基于迭代学习的多机械臂变批次协同阻抗控制方法,包括以下步骤:步骤1,构建多机械臂动力学模型,并根据机械臂的性质和假设将多机械臂变批次协同阻抗控制问题描述为期望轨迹、期望相对配置和交互力之间的动态关系,得到目标阻抗模型;步骤2,基于所述目标阻抗模型得到多机械臂变批次协同阻抗控制目标;步骤3,针对所述阻抗控制目标设计分布式的迭代学习阻抗控制律,使每个机械臂仅通过邻域的阻抗信息来获得期望的阻抗。本发明使得每个机械臂能够通过与邻居的交互来调整阻抗参数,从而在不确定的动态环境中实现更好的协作和性能提升。
南京工业大学 2021-01-12
一种后缘襟翼高频角度偏转的机械减振系统
本发明属于航空技术领域的飞行控制装置,涉及一种后缘襟翼高频角度偏转的机械减振系统,该系统由后缘襟翼,滑轨,滑块,连接杆,传动杆,偏心轮,光轴,齿轮组,伺服电机,深沟球轴承,推力球轴承,直线轴承,卡簧,机构固定底座,以及紧定螺钉其他部分组成。伺服电机根据需求在不同频率下驱动齿轮组转动,带动偏心轮旋转;偏心轮通过由连接杆和传动杆组成的连杆机构将旋转运动转换为往复运动;随后,该往复运动经由滑块与滑轨构成的直线导轨机构传递,补偿后缘襟翼的上下位移,最终实现后缘襟翼以设定频率进行往复角度偏转,改变局部升力和力矩分布。由于采用伺服电机驱动纯机械结构执行动作,故可以实现高频动态调节,抵消周期性气动载荷波动,降低机身振动。
南京工业大学 2021-01-12
一种透平机械密封进口旋流发生器
本发明涉及一种透平机械密封进口旋流发生器,同轴的静子和转子之间形成逆旋腔,导流栅设置在逆旋腔内;逆旋腔沿工质流动方向依次分为渐扩段和渐缩段;逆旋腔的上游设置有齿尖诱导槽;齿尖诱导槽用于将泄漏流以特定径向偏转角进入逆旋腔,并与逆旋腔的渐扩段扩大延伸方向相匹配,该装置通过“压力能→轴向动能→逆旋动能”三级能量转换,突破了传统阻旋栅单一被动阻挡策略的局限性,提升周向流动的调控效果,强化密封流体激振抑制性能。
上海理工大学 2021-01-12
微机械陀螺仪CRS03-02/CRS03-04
产品详细介绍 微机械陀螺仪CRS03-02/CRS03-04系列 微机械陀螺仪CRS03系列简介:CRS03系列微机械陀螺仪(角速度传感器) 是用于测量运动物体角速度的微型惯性器件。陀螺仪应用Corioli效果,采用硅素超微精密环型传感件设计而生产一耐震动的高精度类比输出电压。 微机械陀螺仪CRS03系列特点:◆利用MEMS(微机械加工)的微型器械。◆由于平面环状结构,因此受震动和冲击的影响很小。微机械陀螺仪CRS03系列用途:◆导航◆平台稳定◆汽车安全系统◆遥控直升机◆车装卫星天线设备◆工业用◆机器人◆3D虚拟实境◆船只电子磁针误差补偿有关倾斜(角速度)感应设备 微机械陀螺仪CRS03系列技术参数:
陕西航天长城科技有限公司 2021-08-23
延边大学李东浩教授课题组:靶型多腔电泳同时分离与制备细胞外囊泡
本研究提出一种基于连续梯度非均匀电场结合梯度凝胶孔径分布的靶型多腔电泳装置(Circular Multicavity Electrophoresis,CME)实现细胞外囊泡的分离制备。
延边大学 2025-02-12
高楼玻璃幕墙清洗机器人
主要技术要点(创新点) : 利用仿生学原理,巧妙的实现了机器人的吸壁移步,连续擦洗。 多组吸盘负压吸附,保持刷子以恒定压力贴紧玻璃,擦洗均匀有力。 采用特定的清洗工艺实现多重擦洗,且增设刮水装置,使玻璃洁净明亮。 整个系统为多自由度设计,结构紧凑,动作灵活。 机电气结合,擦洗路径预先规划,清洗过程全自动。该成果来源于大学生机械创新设计大赛项目,荣获第三届全国大学生机械创新设计大赛国家一等奖,实现了江西省在该项赛事中国家一等奖零的突破,获权国家实用新型专利 2 项。 
江西理工大学 2021-05-04
自主式水下航行器(海洋机器人)
项目成果/简介: 经过多年的努力,国内AUV研究已取得长足进展,然而仍存在可靠性差、智能水平低等问题,难以应对复杂海底环境,不能满足我们对高效率作业和长期自主性的迫切需求。为解决上述关键问题,中国海洋大学致力于研发面向长航程深海观测任务的具有数据驱动能力的新一代AUV系统。在结合自主导航系统精确定位与高性能的运动控制基础上,根据AUV调查任务需求,通过对海量高维观测数据的关键特征实行快速分析,赋予AUV系统对航行路径的智能决策能力,极大提升了海洋调查任务实施的质量与效率。 “旗鱼”系列AUV是具备高智能性、自主性、灵活性的自主式水下机器人,在海洋科学研究、资源调查、应急搜救等民用领域,以及情报侦测、探雷灭雷、战场支援等军事领域发挥着关键作用。旗鱼系列AUV具备如下优点: (1)易操作,具有图形化的任务界面使得任务规划过程简单快捷; (2)易布放和收回,三型AUV都配备专用布放回收吊钩,用户可以使用简易回收杆手动使潜器与母船吊放机构建立连接; (3)大航程,可选高配置电池舱,续航力可增加50%; (4)高航速,水动力学优化设计,航速最高可达5节; (5)高可靠性,声学跟踪功能、AUV缠绕物切断与自主摆脱、冗余自救设计、硬件软件设计和测试等,确保系统高可靠性; (6)模块化设计,系统包含基本配置与用户自定义配置,可根据任务要求更换模块化任务舱段。项目阶段:小试、中试阶段效益分析:民用市场:未来5年,AUV年需求量5~10倍的增长,集中在海洋渔业、港口安防、近海能源设施无人值守、海洋工程服务、海洋观测网等。军用市场:随着新式作战模式的确立,将有爆发时发展,未来海上战争逐渐走向无人化,各种海洋机器人武器系统将大量装备。潜在合作单位:青岛澎湃海洋探索技术有限公司、青岛海力旭机电科技有限公司、青岛华通军工投资有限公司、杭州腾海科技有限公司等。知识产权类型:发明专利 、 软件著作权知识产权编号:ZL200810237864.X 201510789501.7技术成熟度:通过中试技术先进程度:达到国内领先水平成果获得方式:独立研究获得政府支持情况:无
中国海洋大学 2021-04-11
“神龙号” 深海水下机器人
项目成果/简介:水下机器人作为一种高新技术手段在海洋开发和利用领域的重要性不亚于宇宙火箭在探索宇宙空间中的作用。它可以代替人类完成复杂海洋环境,特别是深海异常环境(如地质活动频繁的热液区)的环境探测、资源调查和开发等任务,因而具有十分广阔的应用前景和科研价值。“神龙号”深海水下机器人(AUV)是一种具有高精度水下自主导航能力和多种海洋要素观测能力的自主水下探测与运载平台,可以实现深海复杂环境下大范围、多尺度的精确自主导航以及大深度、大范围、多参数、实时观测,对解决深海大洋研究面临的重大科学挑战、支撑“透明海洋”工程建设具有重要的意义。该机器人可以完成1500m以内的海底地形地貌测绘、自适应多AUV组网观测、多海洋环境参数综合观测、海底深海矿藏勘查、水下救援等,为突发海洋事件应急处理、深海大洋高机动性实时观测、水下目标探测及预警等提供了重要设备支撑。项目阶段:工业化生产阶段效益分析:“神龙号”深海水下机器人搭载自主研发的基于声纳和水下视觉的高精度组合导航系统,可以克服单一导航系统的不足,充分发挥声学导航、视觉和结构光导航系统各自的优势,为AUV向更广阔、更长程、更复杂的工作海域发展提供有力的保障,对AUV使用成本的降低和产业化起到极大的推动作用。“神龙号”深海水下机器人可广泛应用于海底基础网络维护、水下考古、深海矿藏勘查,深海环境考察、海洋工程等领域,应用前景十分广阔,而且经济效益显著。与驻青的青岛海洋科学与技术国家实验室、青岛海洋地质研究所、海军潜艇学院开展合作,现阶段处在项目支持的前期研究中。与外地的合作单位有:中船重工集团,国家海洋局等单位。知识产权类型:发明专利 、 软件著作权知识产权编号:ZL201010534188.X技术成熟度:可以量产技术先进程度:达到国际先进水平成果获得方式:独立研究获得政府支持情况:无获得经费:400.00万元
中国海洋大学 2021-04-11
广域动态环境下机器人智能监测
项目简介: 当前,我们面临资源约束趋紧、环境污染严重、生态系统退化的 严峻形势,将新一代信息技术,包括云计算、物联网、人工智能、机 器人、虚拟现实与可视化等技术应用于生态与自然环境智能监测,对 于建设生态文明,保护生态环境具有重要的意义。 以多旋翼无人机、自主全地形车、遥观测机器人生态智能监测站 等机器人平台为载体,针对野外广域动态环境下大气、土壤、水资源、 生物多样性等生态与自然环境要素,进行立体化、网格化、智能化实时监测技术研究。本报告将介绍基于信息物理系统的智能化立体生态 监测体系设计,智能无人平台环境感知、覆盖、更新与重建,基于视 觉的动态目标检测、跟踪与识别技术。 应用前景分析 通过该项研究成果转化与推广,可有效提升生态系统监测数据采 集及分析标校能力,逐步实现长期稳定的自主化、网络化业务运行, 为我国进行生态系统立体综合监测提供技术支撑。 
南开大学 2021-04-11
100KG四轴搬运机器人
四轴搬运机器人是应用于生产线上的四自由度关节型串联机器人。本项目根据生产线的 工作要求确定机器人的各项基本技术指标,为机器人的结构设计提供依据。对于机器人的机械 结构部分,基于模块化的设计思想,进行机器人本体的总体设计。将机器人的腰部、大小臂部 件、腕部设计成模块的形式,可以根据实际要求,方便地设计出满足不同载荷和运动范围要求 的机器人产品,减少设计周期,降低制造成本,有利于批量生产。在材料选择上,小臂和腕部 采用高强度铝合金,体现质量轻和易成型的要求。大臂采用组合焊件,用薄壁钢板围成空腔, 在保证强度和刚度的前提下,追求重量轻、加工周期短、用材少。基座采用铸铁,吸振和成型 性能好。在机器人的传动和结构设计方面,体现结构简单、单元集成度高、系统优化的现代设 计理念。 传动应保证传动路线短,结构紧凑。采用RV减速器,大减速比减速器安装在传动链的最 后一级,尽量缩小传动间隙的影响。RV减速器是一种新型的二级封闭行星轮系,是在摆线针 轮传动基础上发展起来的一种新型传动,而且其具有体积小、重量轻、传动比范围大、寿命 长、精度保持稳定、效率高等优点。根据机器人的结构特点,建立了机器人的运动学数学模 型,对其运动方程进行了推导,并分析了机器人的工作空间。建立了搬运机器人的雅可比矩 阵,反映了机器人末端执行器的速度与各关节速度之间的映射关系,求解了各个关节的速度和 加速度变化情况。
华东理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 77 78 79
  • ...
  • 257 258 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1