高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种用于薄膜复合的同步驱动对辊装置
本发明提供一种用于薄膜复合的同步驱动对辊装置,包括主动辊组件,其具有一可转动的主动辊,该主动辊组件固定安装在一安装板上,其一端与一驱动组件联接,用以提供驱动力带动该主动辊转动;浮辊组件,其具有一可转动的浮辊,该浮辊与所述主动辊呈有间隙地相对布置,两辊的中心轴线平行;齿轮组件,其包括外啮合的呈同步转动的两齿轮,该两齿轮分别通过轴端同步带轮上的同步带与主动辊和浮辊相连,实现两辊的同步转动;在驱动组件驱动下,所述主动辊转动,驱动所述齿轮组件的两齿轮转动,从而带动所述浮辊与该主动辊同步转动,实现对两辊间的薄膜的驱动或复合。本发明方便调节,可稳定完成多层薄膜的复合和输送,保证薄膜复合的均匀性。
华中科技大学 2021-04-11
高效能驱动系统共性关键技术及其应用
项目获得国家自然科学基金、江苏省高技术研究计划等支持,获教育部科技进步一等奖 1 项、中国轻工业联合会科技进步二等奖 1 项。 1、项目简介 开发先进的驱动系统,实现梳理齿条加工的数字化控制,解决其刚性机械耦合连接和热处理耗能问题,是纺织器材行业发展急需解决的关键难题。本项目以此为背景,对高效能驱动系统共性关键技术进行了详细的研究与开发。主要研究内容包括高效能驱动控制器的研究、功率变换器的拓扑结构、智能化调制策略与控制方法研究、电机的数字化设计和控制平台研究。 2、创新要点 (1)提出了等价输入干扰估计器的优化控制策略。 (2)提出了正弦波电流幅值调制的概念。 (3)构建了虚物实化、实物虚化的电机数字化设计平台。 3、效益分析 本项目在 30 余家企业应用,累计新增产值约 36630 万元人民币,直接经济效益可达 11560 万元,出口创汇 3800 余万美元,节约用水近 100 万吨,节电 1340余万千瓦时,节约蒸汽 40870 万吨。 4、推广情况 本项目在苏浙豫等省的 30 余家企业,尤其是纺织器材企业得到推广应用。主要有常州蓝箭集团有限公司、河南光山白鲨针布有限公司、南通惠通纺织器材有限公司、无锡市猫头鹰纺织器材有限公司、无锡市威华焊接设备制造有限公司、江苏省无锡市亨达电机有限公司、浙江锦峰纺织机械有限公司、无锡圣马科技有限公司。 授权专利: 正弦波电流幅值调制逆变器200510095195.3 数字铅酸蓄电池容量测试修复仪 200710191362.3 数字式脉冲固定超前时间移相电路 200710190512.9 一种智能型摩托车限速点火器 200710020254.X341 智能移动捡球机器人 200710190398.X 感应加热快速热水器 20071019511.4 基于 FPGA 的空间矢量脉宽调制方法200810025527.4 三相数字式分时平衡大功率交流焊接电源 200810195517.5 一种基于 FPGA 的风电系统最大功率跟踪控制器 200910184672.1 便拆装携带式风、光发电一体装置 200920258809.9
江南大学 2021-04-13
高性能非制冷红外探测器芯片
        技术成熟度:技术突破         研发团队以设计制备宽光谱超材料吸收器和像元级集成红外探测器为研究主线,在超薄宽带高吸收原理与策略、材料/器件设计与制备方面取得了突破性进展。围绕器件吸收率低、噪声等效温差(NETD)大、集成兼容性差的难题,提出了无损与损耗型介质结合、多模谐振耦合光吸收的思路,获得超薄宽带高吸收率材料;提出将超薄宽带高吸收率材料与非制冷红外探测器像元级集成新思路,获得了宽谱、NETD小、多色探测的非制冷红外探测器,NETD降低3倍,研究成果已在中国兵器北方夜视广微科技应用转化。         意向开展成果转化的前提条件:中试放大及产业化工艺开发资金支持
东北师范大学 2025-05-16
DTS CANOpen动态高抗震倾角传感器
产品介绍DTS CANOpen是瑞惯科技自主研发生产的新一代数字型MEMS动态双轴倾角传感器,专为测量运动载体的姿态而设计,尤其适用于运动或振动环境下的倾角测量。该传感器内置加速度计和陀螺仪,结合卡尔曼滤波算法,能够准确捕捉并输出载体在运动或振动状态下的实时姿态数据。采用CANOPEN通讯协议,DTS CANOpen在工业应用中具有广泛的兼容性和实用性。该产品采用非接触式测量技术,能够实时输出当前姿态倾角,安装简便,无需校准相对变化的两个平面。其内部集成了高精度的AD转换器和陀螺仪单元,能够实时补偿非线性误差、正交耦合、温度漂移以及离心加速度的影响,有效消除运动加速度带来的干扰,显著提升动态测量精度。因此,DTS CANOpen能够在复杂运动场景和恶劣环境中长期稳定工作。作为一款动静双模测量传感器,DTS CANOpen具备强大的抗电磁干扰能力,适用于各类高强度冲击和振动的工业环境。其卓越的性能使其成为工业自动化控制中测量姿态的理想选择。主要特性★ 量程双轴±90° ★ 分辨率0.01°★ 动态精度±0.1° ★ 静态精度±0.05°★ CANOpen协议 ★ 三种防护等级可选主要应用★ 强冲击振动碎石设备 ★ 工程车设备测控★ 施工设备调平 ★ 农用机械测控★ 飞行器姿态控制 ★ 船舶姿态监测 性能参数 DTS CANOpen 单位 参数 测量范围 ° 横滚±180,俯仰±90° 测量轴 轴 X Y 双轴 横滚俯仰分辨率1) ° 0.01 横滚俯仰静态精度@25℃ ° ±0.05 横滚俯仰动态精度(rms)@25℃ ° ±0.1 陀螺仪 陀螺仪量程 °/s ±300 零偏稳定性(10s均值) °/h 8.5 零偏不稳定性(allan) °/h 4.5 角度随机游走系数(allan) °/sqrt(h) 0.25 加速度 加速度量程 g ±4 / ±16(可选) 零偏稳定性(10s均值) mg 0.02 零偏不稳定性(allan) mg 0.005mg 速度随机游走系数(allan) m/s/sqrt(h) 0.005 零点温度系数3)@-40~85℃ °/℃ ±0.01 灵敏度温度系数4)@-40~85℃ ppm/℃ ≤100 上电启动时间 S ≤3.5 响应时间 S 0.01 通讯协议 - CAN Open 电磁兼容性 - 依照EN61000和GBT17626 平均无故障工作时间MTBF 小时/次 ≥98000 绝缘电阻 兆欧 ≥100 抗冲击 - 100g@11ms、三轴向(半正弦波) 抗振动 - 10grms、10~1000Hz 防护等级 - IP67 / IP68(可选) 重量 g 单连接头≤165g(不含电缆线) / 双连接头≤180g(不含电缆线) 1)分辨率:指传感器在测量范围内能够检测和分辨出的被测量的最小变化值。 2)精度:指在常温条件下,对角度多次测量(>16次),取测量值与实际角度误差的均方根差。 3)零点温度系数:指传感器零值状态下,在其额定工作温度范围内相对常温的示值变化率。 4)灵敏度温度系数:指传感器在其额定工作温度范围内,满量程示值相对于常温满量程示值的百分比,随温度的变化率。
深圳瑞惯科技有限公司 2025-04-12
一种多轴数控机床的无背隙双伺服交叉轴回转台
本发明公开了一种多轴数控机床的无背隙双伺服交叉轴回转台, 包括 B 轴固定支撑座、B 轴回转系统和 C 轴回转系统,B 轴回转系统 包括旋转轴 B、B 轴旋转基座和 B 轴减速电机,B 轴减速电机固定安 装在B轴旋转基座上且其通过B轴滚轮圆弧齿条机构驱动B轴旋转基 座绕旋转轴 B 的轴线旋转;C 轴回转系统包括旋转轴 C、C 轴旋转基 座和 C 轴减速电机,C 轴减速电机固定安装在 B 轴旋转基座上且其通 过 C 轴滚轮圆弧齿条机构驱动 C 轴旋转基座绕旋转轴 C 的轴线旋转。 本发明可以很好地应用
华中科技大学 2021-01-12
一种微流控移液器枪头
本发明公开了一种微流控移液器枪头,包括本体和外囊,所述本体包括设在本体尾部区域内的进液通道、沿本体圆周周向排布的若干个浓缩微流道、设在本体外表面的空白液体出口,以及设在本体头部区域内的出液通道;浓缩微流道包括直流道、分叉流道、中间流道和两路旁支流道,直流道一端与进液通道连通,另一端与分叉流道连通,中间流道一端与分叉流道连通,另一端与出液通道连通,两路旁支流道分别设在中间流道两侧,旁支流道的一端与分叉流道连通,另一端向本体外表面弯折并与空白液体出口连通。本发明结构简单,通量高,能利用微流体惯性效应来实现微米级粒子的浓缩。
东南大学 2021-04-11
维汉双语生活缴费微信小程序
产品服务:该项目已与同学合作创立公司(新疆伊祖儿商贸有限公司)投入运营,此前已完成开发,翻译,接入接口,推广等工作。商业模式:项目通过商品利润,手续费和广告等方式盈利。本项目在微信平台目前拥有150万个用户且达到了稳定的盈利状态。此后发展规划中希望开发更多缴费业务,提高管理水平,拥有更多资金投入来开发和维护。 
同济大学 2021-04-10
靶向性纳米与微球抗癌药物
世界上还没有这类产品上市或进入临床研究。本项目技术具有完全的我国知识产权,有关技术与工艺正准备申请国家发明专利。 与国内外现有的抗癌药物相比,靶向性纳米与微球抗癌药物具有以下的优点: (1)毒性低。本产品在体内具有较低的渗透压与毒性,特别是能在肿瘤部位选择性地释药,特异性地杀死癌细胞同时又不损伤正常细胞,有效地降低药物的毒副作用,其毒性比临床应用的抗癌药物至少低2倍。 (2)具有肿瘤靶向性与专一选择性。小鼠体内药物分布实验表明,靶向性纳米与微球抗癌药物能与肿瘤细胞特异性结合和内化,主动地改变在体内的自然分布,导向并富集至肿瘤组织或细胞内,可被肿瘤摄取,在体内显示特异性分布,在靶肿瘤中的浓度较高,选择性杀伤癌细胞,从而实现靶向给药。 (3)疗效好,抗癌活性高。靶向性高分子抗癌药物具有良好的控制释放性能,且在释药过程中能较好地维持有效血药浓度,特别是能在肿瘤部位选择性地释药,特异性地杀死癌细胞同时又不损伤正常细胞,能有效地诱导人体肝癌等细胞(Bel-7204)凋亡。其抗癌活性至少是临床应用抗癌药物的4倍。 (4)疗效时间长。临床应用的抗癌药物在体内最多只能维持30分钟,而靶向性高分子抗癌药物可富集于肿瘤组织或细胞内,在肿瘤(如人体肝癌Bel-7204等细胞)具有较长的停留时间,便于长时间选择性杀伤癌细胞,从而实现靶向给药。而且疗效时间长短,可以随意调节控制。 (5)用药量小。靶向性高分子抗癌药物具有良好的控制释放性能,极大提高药物的生物利用率,而且对药物具有很好的保护功能,减少药物在体内被破坏。与临床应用的抗癌药物相比,其给药剂量至少可以减少2倍。 (6)不需要频繁服药,可以减少病人的痛苦。 (7)具有完全的我国知识产权,有关技术与工艺正准备申请国家发明专利。 目前已经完成了靶向性高分子抗癌药物实验室小试研制、制备工艺优化与体内外动物实验。将进行中试研究,生产足够的产品,重新进行正式的结构表征,并邀请有权限的专业医院进行临床前体内外动物实验,收集整理充足的药物数据,准备申请进入临床试验。
武汉工程大学 2021-04-11
关于微腔表面非线性光学的研究
北京大学物理学院肖云峰教授与龚旗煌院士领导的研究团队在微腔非线性光学研究取得重要进展:首次实现有机分子修饰的二氧化硅光学微腔的高效三次谐波产生,比此前报道的二氧化硅微腔转换效率提高了四个量级,接近晶体微环腔三次谐波的最高转换效率。成果被《物理评论快报》以封面及编辑推荐形式亮点报道:Phys. Rev. Lett. 123, 173902 (2019)。论文题为“Microcavity Nonlinear Optics with an Organically Functionalized Surface” (https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.173902)。左图:二氧化硅微腔表面修饰有机共轭分子;右图:实验测得的激发光和三次谐波光谱图 三阶非线性光学效应是现代光学研究和应用中最重要的非线性光学过程之一,被广泛应用于实现光频梳、全光开关和量子光源等。二氧化硅回音壁微腔由于具有超高的品质因子和成熟的制备工艺,已经成为是现代光子学研究的重要器件。然而,由于材料的限制,二氧化硅三阶光学非线性响应较弱于多数晶体材料,这严重地制约了二氧化硅微腔器件的性能。另一方面,有机共轭小分子具有离域的电子系统,在光场激发下,离域电子表现出很强的非谐振动,从而具有很高的非线性响应系数。同时,回音壁微腔的表面倏逝场为微腔与外界物质相互作用提供天然的通道。因此,采用表面修饰技术,光学微腔和高非线性响应的有机分子形成连结;有机分子通过表面倏逝场作用,有效地调控微腔系统的非线性效应,从而提高微腔器件的性能甚至可能突破微腔材料的限制。 在该项工作中,研究团队通过采用两步反应法,实现了二氧化硅微腔表面均匀地修饰有机分子层,既有效增强了微腔表面三阶非线性系数,同时保持了腔的高品质因子特性。实验中,研究者采用最近发展的动态相位匹配技术,即基于腔克尔效应和热效应补偿非线性频率转换过程中本征的相位失配,实现泵浦光和谐波频率与热腔模频率的共振匹配,最终实验上观测到三次谐波转换效率达到1680%/W2,比之前报道的二氧化硅微腔的最高转换效率提高了四个量级,接近目前晶体微环腔转换效率的最高值。研究者进一步地在实验上揭示了三次谐波的增强来自表面修饰的有机分子:微腔三次谐波/合频转换效率显著依赖于泵浦光偏振,平均输出功率对比度达到50倍,这是由于有机分子偶极取向导致的偏振依赖响应。该工作采用的表面修饰技术和动态相位匹配方法可以普适地推广到其它微腔和光波导等体系中,在宽带可调谐非线频率转换和表面科学研究中发挥重要作用。
北京大学 2021-04-11
微藻水热液化制取生物柴油技术
本发明提供了一种微藻水热液化制取生物油的连续式反应系统及方法,通过设置两级预热器可以充分利用液化反应后的余热,进而降低反应系统的整体能耗。此外该系统通过固液分离器、气液分离器和离心机的联合作用可以连续、高效地实现液化产物的分离,无需额外的有机溶剂对生物油进行分离。相比其他水热液化系统,本发明系统运行费用低、产物分离彻底、系统连续性好,可以广泛应用于微藻水热液化生产生物油。
西安交通大学 2021-04-11
首页 上一页 1 2
  • ...
  • 41 42 43
  • ...
  • 389 390 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1