高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
MV-E8100 PCI-E四路高清实时图像采集卡
产品详细介绍 【产品简介】 MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡是基于PCI-E X1总线结构开发的四路高清实时图像采集卡,数据传输速率可达 250MByte/S,为了更好的为行业客户提供更优质的产品和服务,维视公司针对流媒体应用,多媒体视频点播、在线直播、录播,大屏幕拼接、屏幕边缘融合、工业多路图像采集处理、机器视觉图像处理分析、智能交通、电子警察、车牌识别、抓拍等领域的应用特点推出的新一代图像产品。 MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡使用第四代Philips公司非常精良的10bit A/D芯片,采用4线3D梳状滤波器能自动消除噪点、抗混叠滤波等技术,使图像清晰度更高、图像采集的实时性能更强,采样频率更高,完美解决了运动图像采集处理的拉毛、拖尾、撕裂等现象,PCI-E X1总线结构解决了PCI总线视频图像采集卡大尺寸多路图像采集拉丝的问题,使图像色彩真实,层次感好过度清晰,板卡性能稳定,免除了客户因图像采集质量不高影响整个设备性能的烦恼。 【性能指标】 l 可同时采集四路标准PAL、NTSC制式彩色/黑白信号,一槽四卡,总帧率100帧/s; l MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡可支持四路复合视频输入; l 采用第四代最新Philips的10bit A/D芯片,黑白方式10bit,彩色方式RGB各10bit;、 l 四路同时可采集最大分辨率为PAL:768×576×32bit×25fps,NTSC:640×480×32bit×30fps支持一机多卡; l MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡支持任意形状的图像采集,持裁剪与比例压缩模式; l 可实时采集单场、单帧,任意间隔以及连续帧的图象; l MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡亮度、对比度、色度、饱和度,画面大小比例均软件调节; l MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡具有软件字符图形叠加,硬件上下镜像反转功能;  l 可实现实时图像采集通过PCI-E X1总线传递至计算机内存; l 四通道实时图像采集卡支持计算机内容与图像同屏显示。; l MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡采集格式:如RGB555、RGB24、YUY2、YVU9、YV12等; l 该产品为MV-800系列产品的升级产品,对于老客户开发好的系统软件不用做任何改动即可完美兼容。 l MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡底层程序稳定,功能丰富、开发简便、便于程序移植,供货稳定,无需担心停产。 l 硬件兼容性能好,工作稳定可靠。可在兼容机、原装机/工控机上,甚至在高温、电弧焊接、石油勘探现场等恶劣环境下都能良好地稳定工作。 【开发工具】 l MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡操作系统支持:Windows 2000、XP、Vista、Win7。 l SDK支持:VC、VB、Delphi。提供演示程序及演示程序源代码! l MV-E8100四路高清采集卡,四路实时采集卡,PCI-E四路采集卡驱动支持:WDM、VFW、DirectX、OpenCV、Matlab、LabView、Halcon、MIL。 【应用领域】 l 流媒体领域:多媒体视频录播、在线直播、点播系统、大屏幕拼接、屏幕边缘融合等。 l 工业领域:生产线在线检测、机器视觉成像系统、工业图像处理等; l 科学研究:模式识别、图像采集算法研究、图像处理、建模等; l 交通领域:电子警察、车牌识别、道路抓拍;
维视数字图像(北京)有限公司 2021-08-23
MV-E8800 PCI-E 8路高清实时图像采集卡
产品详细介绍 【多路图像采集卡特点简介】 MV-E8800 PCI-E多路图像采集卡 高清图像采集卡 高分辨率图像采集卡是对系统开发商进行多路视频图像开发的PCI-E图像采集卡,它采用PCI-E X1总线作为数据存取通道,(独立带宽,高于PCI共享带宽模式),总线数据传输速率可达250MByte/S,实时并行处理技术使图像采集速度更快,可以采集到更多通道和更大尺寸的视频图像。解决了PCI总线视频图像采集卡大尺寸多路图像采集拉丝的问题 ,采用超强的10bit AD转换芯片,相对于8bit、9bit AD转换来说,不管是图像质量还是颜色的饱和度方面都要强很多,它具有的4线3D梳状滤波器能自动消除噪点,它的图像质量要更好. 采样频率更高,运动图像软件处理不拉毛、不拉丝、不托影,图像质量得到最大增强,性能更为稳定。 MV-E8800 PCI-E 8通道多路图像采集卡 高清图像采集卡 高分辨率图像采集卡用于交通路口电子警察,工业图像检测,大屏幕视频显示、多路图像同时抓拍,并提供给您方便的二次开发包(DLL),甚至还能根据用户要求直接修改底层软件,令我们的图像卡更好地配合您的系统。 【高清图像采集卡性能指标】 l       8路PAL,NTSC彩色或黑白视频信号同时输入,同时显示。  l      MV-E8800 8通道多路图像采集卡 高清图像采集卡 高分辨率图像采集卡用10bit高清晰度图像芯片,图像色彩更真实,清晰度更高。  l      图像分辨率最高:768 X 576 X 32BIT; NTSC 640 X 480 X 32BIT。 l      支持任意形状的图像采集。支持裁剪与比例压缩模式。 l      MV-E8800 8通道实时图像采集卡支持计算机内容与图像同屏显示。  l      MV-E8800 8通道实时图像采集卡亮度、对比度、色调、色饱和度软件可调。 l      MV-E8800 8通道多路图像采集卡 高清图像采集卡 高分辨率图像采集卡可在图象上实时叠加字符、图形、文字功能  l      MV-E8800 8通道实时图像采集卡支持单场、单帧、连续场、连续帧的采集方式,支持单机多卡。  l      软件功能丰富完善、开发简单方便,在Microvison图像采集卡中容易移植; l     MV-E8800 8通道多路图像采集卡 高清图像采集卡 高分辨率图像采集卡可在外部视频上叠加文字和图像,实时显示在计算机屏幕上; l      底层程序稳定,功能丰富、开发简便、便于程序移植,供货稳定,无需担心停产。 l      硬件兼容性能好,工作稳定可靠。可在兼容机、原装机/工控机上,甚至在高温、电弧焊接、石油勘探现场等恶劣环境下都能良好地稳定工作。 【高分辨率图像采集卡开发工具】 l     操作系统支持:Windows 2000、XP、Vista。 l     SDK支持:VC、VB、Delphi。提供演示程序及演示程序源代码! l     驱动支持:WDM、VFW、DirectX、OpenCV、Matlab、LabView、Halcon、MIL。 【典型应用】 工业检测、智能交通、医学影像、车牌抓拍、工业监控、仪器仪表、大屏幕显示、机器视觉等领域。
维视数字图像(北京)有限公司 2021-08-23
小龙虾(壳氏原螯虾)大规格早苗培育及健康养殖技术
已有样品/n小龙虾(壳氏原螯虾)大规格早苗培育及健康养殖技术。  成果简介:本成果通过田间工程改造、亲本筛选、水体调控及病害防控等技术,能在稻田中提早繁育大规格小龙虾苗种,规格可达8-15克,比普通苗种提早20-40天;苗种下塘后,通过“以草控水、养草防病、均衡营养”的方法,以高效、健康养殖标准实现小龙虾“早苗早投、错峰上市”,提高产值。本成果适用于稻田、池塘和藕塘等多养殖场所;适用于面积不同大小的区域,尤其能很好利用稻田收割后的稻杆。  应用前景:本成果能有效利用稻田、池塘和藕塘等养殖区域,尤其能
华中农业大学 2021-01-12
大规模并发数据流处理系统及其处理方法
一种大规模并发数据流处理系统及其处理方法,涉及数据处理技术领域,所解决的是提高流处理器处理效率的技术问题.该系统包括数据流单元缓冲区,数据流单元聚类队列池,数据流单元映射表,流处理器池,数据流读取部件,DSU聚类分配部件,任务调度部件,计算后处理部件,所述流处理器池由多个GPU构成,其中数据流读取部件用于将并发数据流写入数据流单元缓冲区,DSU聚类分配部件用于对数据流单元缓冲区中当前被处理的数据流单元进行分类,任务调度部件用于将数据流单元聚类队列池中的就绪队列加载至流处理器池中的GPU上执行流计算,计算后处理部件用于将GPU的计算结果返回到数据流.本发明提供的系统,能提高流处理器的处理效率.
上海理工大学 2021-05-04
基于激光点云数据的三维建模应用实践
本书共11章,第1章阐明了研究背景与意义,国内外研究现状,研究对象概况,三维建模技术方法;第2~6章分别介绍了海清寺的阿育王塔,万年宝鼎,关圣帝君像,浮雕长廊三维建模的技术方法;第7~9章分别介绍了淮海工学院苍梧校区的欣园亭,化工工程学院实验楼,测绘工程学院集中办公区三维建模的技术方法;第10~11章分别介绍了石灰岩矿与地质灾害体的三维建模与应用技术方法.
江苏海洋大学 2021-05-06
新型冠状病毒基因组注释数据库
2020年1月30日,天津大学生物信息中心新型冠状病毒基因组注释数据库上线,并纳入中国国家基因组科学数据中心向全球开放服务。天津大学生物信息中心的高峰教授、罗昊博士采用已研发的ZCURVE_CoV系列软件对包括新型冠状病毒(2019-nCoV)在内的两千余株冠状病毒的基因组进行了基因识别和酶切位点预测,并以数据库(ZCURVE_CoV Database)的形式提供网上服务。
天津大学 2021-04-10
新冠肺炎疫情数据导航、防控态势及溯源研究
为服务社会大众了解疫情走势,并为相关部门提供决策支持,北京航空航天大学北航大数据与脑机智能高精尖创新中心刘旭东教授、胡春明教授、李建欣教授等组织师生,与复杂系统可靠性实验室李大庆研究员联合组成团队,全力投入建模和系统研发,已向决策部门提供疫情数据评估与预警报告、区域物资保障评估专项报告等,并迅速开发“新冠肺炎疫情数据导航服务”平台,数据单日访问量近 5 万次。此外,中心还进行新型冠状病毒的疫情评估与预测报告并开发疫情实时更新系统。中心对疫情现状进行分析和预测,为公众提供及时、准确的疫情态势分析、走势预测、舆情动态和政策措施等智能数据服务,实现全国及重点城市日度传播系数计算、短期确诊人数预测和长期疫情拐点与结束日期预测、疫情缓解系数评估等功能。此外,大数据与脑机智能高精尖创新中心研究团队根据疫情确诊患者相关公开数据,利用自然语言处理等技术,从已公开全国各省市直辖区四千余位确诊患者轨迹中抽取了基本信息(性别、年龄、常住地、工作、接触史等)、轨迹(时间、地点、交通工具、事件)及病患关系形成结构化信息。同时开发确诊患者轨迹可视化查询与分析系统,为疫情传播与防控相关研究提供有效支撑。
北京航空航天大学 2021-04-10
基于深度时空分析的综合能源数据挖掘与预测技术
本成果针对城市水电气热等综合能源数据来源广泛,结构复杂,且与用户、时间、空间信息关系紧密的特点,构建了高性能综合能源数据分析平台,提出了细粒度的能源数据分析理论框架及方法,并将其应用于智慧城市建设。
南开大学 2021-02-01
融合架构的高时效可扩展大数据分析平台
大数据应用的多样化 需要的计算模型、数据模型多样化; 目前每类模型需要单独的开源系统来支持(如HDFS、HBase、Neo4j、MongoDB,Flink,Spark,Tensorflow等)。 多系统导致大数据分析平台非常复杂、效率低下。研究目标:研究和开发面向新型多计算模型融合架构的、高时效、可扩展的新 一代大数据分析支撑系统与工具平台FAST(Fusion-Architecture, Scalable, Time-efficient big data analysis platform)。针对目前大数据分析平台复杂、效率低下的痛点,该系统具有三个 方面的优势:首先,这套系统采用融合架构,一方面实现关系、图、键 值、文档等多种数据模型的高效融合,另一方面实现批处理计算、流计 算的深度融合,并可以通过SQL扩展语言来进行多模型的统一查询,实现高效的跨模型查询。其次,对于复杂系统来说,时效性非常重要,这 套系统采用融合架构提高效率是实现高时效的基础,更重要的是,我们 对大数据分析从数据到用户进行了端到端的全栈时效优化。最后,对于 大数据应用来说,系统扩展性非常重要,本系统在资源层、存储层和计 算层进行了全面的扩展性优化。下面在融合架构、高时效和可扩展这三 个方面,分别详细介绍FAST系统的三个主要亮点。融合架构FAST系统的第一个亮点是融合架构,我们在技术方面的创新主要包 括多数据模型融合和多计算模型融合两方面。多数据模型融合:设计和研发了多模型数据管理与查询引擎,支持关系、图、键值、 文档等多种数据模型,实现了查询解析、查询优化、元数据管理、数据 分布等功能,将多种数据模型进行统一管理和深度融合。同时扩展了SQL语言,通过统一的查询接口支持对关系、键值、图、文档等数据进行独立访问或者跨模型查询。经过试验,多模型数据融合查询,比Spark 2.3.4的查询时间能平均减少70.7%。目前spark等现有系统还需要手工编程方式来实现跨模型查 询,所以FAST系统在易用性上也表现良好,降低使用门槛,提高开发效率。多计算模型融合:在计算层实现了最常见的批处理计算和流计算深度融合,批流融合的核心方法是在系统内部实现批和流的统一表达,批是对有限数据集 的运算,流是对无限数据流的计算,我们设计了UCollection结构对批和 流数据进行统一表达,通过识别的bounded标志,来确定是批、流、或批流融合。有了统一表达,可以开展一系列融合优化来提升系统性能。 并且对上通过Unified API统一用户的批、流接口,实现二者在编程范式上的统一表达。对于批流混合的计算,融合架构系统的查询延迟比Flink 1.4.2能减少57%,吞吐量平均可以提升到6.72倍。高时效FAST系统的第二个亮点是高时效,即缩短大数据分析的时间消耗, 提高效率。由于大数据分析平台是一个非常复杂的系统,为了做到高时效,系统不能存在性能短板,因此需要对大数据分析的整个过程进行端到端的全栈时效优化。如图中所示,自下而上,需要在多模态存储、批流融合、机器学习、人工操作各层都进行优化。对于多模态存储,面向应用负载和异构硬件特征进行自适应优化;对于批流融合计算,在统一表达基础上,进行系列融合优化技术, 包括DAG优化、迭代优化、部署优化、操作符优化等;在机器学习层面,进行模型优化、消息优化、梯度优化、概率优化 等来提高时效;而且我们也考虑到大数据分析过程中用户人工操作的时效性问题, 通过智能地进行大数据分析方法和模型的推荐,来缩减人工操作的 时间。可扩展FAST系统的第三个亮点是可扩展,由于大数据应用规模很大,数据增速快,对系统可扩展性的要求非常高,为此我们在系统的资源层、 存储层和计算层进行了全面的扩展性优化。在资源层,系统都部署在云计算的虚拟化资源之上,利用了云计算资源的弹性机制进行系统扩展。并在系统中实现了可伸缩调整模块, 能实时监控软硬件系统的状态,按照应用需求来自适应地进行弹性伸缩。在存储层,分布式存储系统扩展性的关键在于分布式共识和一致性 协议(Raft),因此提出了KV-Raft、vRaft等进行Raft的扩展优化。在计算层,我们扩展了机器学习模型的参数规模,使系统可以支持 到百亿级别的超大规模机器学习模型训练,并且性能方面有明显提 升。亮点成果:融合架构大数据分析平台目前已经在阿里巴巴双十一进行示范应用。 从2020年11月10日至11月16日一周的时间,在阿里的生产环境中,研发 的系统一直连续稳定运行,基于淘宝和天猫的实际用户信息进行大数据 分析,综合运用了本系统的存储、计算、机器学习等多个模块的能力, 累计进行了184亿件商品推荐。同时在双十一期间,基于智能交互向导技术,也面向电子商务应用 的卖家提供了“生意参谋”应用,基于大数据分析,帮助卖家分析产品 销量变化的原因,以及促销的有效手段等。
中国人民大学 2021-04-10
一种用于串行雷达数据的协议转换器
成果描述:本实用新型公开了一种用于串行雷达数据的协议转换器,包括中央处理器、网卡芯片、PHY芯片和交换芯片;其中,中央处理器对外部输入的串行雷达数据进行解析而得到数据报文,并通过数据总线传输给网卡芯片;网卡芯片按照设定的以太网协议,将数据报文封装成网络数据并将网络数据传输给PHY芯片,PHY芯片通过与其连接的交换芯片将网络数据转发至目标端口。因此,本实用新型能够通过协议转换实现串行雷达数据在网络中的传输。市场前景分析:本实用新型能够通过协议转换实现串行雷达数据在网络中的传输。与同类成果相比的优势分析:国内领先
成都大学 2021-04-10
首页 上一页 1 2
  • ...
  • 58 59 60
  • ...
  • 88 89 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1