高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
西门子电动二通阀北京
产品详细介绍西门子(SIEMENS)电动温控阀门系统由原装进口产品组装而成,可根据回水温度或风道温度自动调整出水温度,或调整出水流量,与热换机组或换热器组合,可制成智能化换热机组或智能换热器,产品主要有以下优点:1、西门子阀门(SIEMENS)控制器安装调试简单,不需要昴贵的调试及现场编程费用。2.西门子电动阀阀体部分采用先进的压力反馈装置,解决了长期以来困扰电动调节阀因高压降而影响其使用的问题。用途广泛,可用于化工、石油、冶金、电力轻工等各行业生产和实现自动控制,适用于空调、制冷、通风、供热等换热场合。3、电动阀门执行器采用西门子楼宇科技的液压控制专利技术,实现大推力,长寿命,安全稳定,可有效节约用户投资。二、主要特点:1、西门子电动温控系统所有组件均采用西门子原装进口产品,分体供货,便于运输及维护。 2、电动温控阀门可接受各类控制系统输出的断续和连续控制信号,便于系统集成。 3、电动阀体构造采用平衡式结构,在电动执行器输出力相同的情况下,它比单座直通阀适用的允许压差范围更广。体积小、重量轻、安装方便。 4、当阀门关闭或开到最大时,限位开关切断电源,保护电机。>5.电动执行器使用永磁同步电机,响应速度快、输出力大、功耗低、噪音小。三、结构组成:西门子电动温度调节阀按结构分为两通阀和三通阀。由西门子原装阀体、阀门执行器二部分组成。1、西门子电动阀体SIEMENS阀门口径:DN15-DN150 订购时请说明您所需阀门的具体型号或您要求的基本参数(口径、压力、介质温度、介质为水或蒸汽等)    
北京东升伟业能源技术有限公司 2021-08-23
塑性精密成形工艺技术及应用
塑性精密成形是坯料在外力作用下,使金属在模具中发生塑性变形而成为所需形状、尺寸和性能的产品加工过程。该工艺能够解决材料切屑加工困难、加工量大、材料利用率低等问题,既减少了人力物力的浪费,又提高了产品的尺寸精度和使用性能。 1、铝合金、钛合金等温精密模锻工艺应用 某型号飞机铝合金法兰盘无斜度、无余量等温精锻件,图1所示,该锻件通过一次性成形达到零件外形设计尺寸,内孔和外形无须机械加工。 图1 铝合金法兰盘精密成型件 某型号飞机Ti-1023钛合金护板接头等温精锻件,图2所示,该等温精锻件外形无余量,为简单毛坯一次成形。   图2 钢板焊接件及钛合金精锻件 某型号Ti-1023钛合金摇臂等温精锻件,图3所示,已通过装机试飞测试,属于无斜度无余量精锻件。                                                                          图3(a) 钢摇臂机加件     图3(b) 钛合金摇臂等温精锻件 图4所示为某型号发动机TC6钛合金等温精锻件摇臂和指针。研制的钛合金等温精锻件的复杂程度处于国内领先水平。 图4 钛合金等温精锻件 2、液态模锻(挤压铸造)工艺应用 该工艺可解决铝合金小型复杂结构件的精密、高效的成型问题。针对气泵上盖零件,图5所示,实现了一模成形(多)两件、带侧孔抽芯、钢镶嵌件等工艺特点,简化了原加工工艺,降低了制造成本。 图5 气泵上盖液态模锻件 与某军工厂合作完成了多功能炮弹壳体液态模锻工艺研究,图6所示,炮弹毛坯内孔不加工,材料利用率大幅提高,加工工时大幅度下降,炮弹试验件经靶场试验测试满足设计要求。 图6 气泵上盖液态模锻件 某航空仪表电器厂传感器法兰盘,图7所示,材料为Ly12,采用液态模锻技术制取通用毛坯,替代原工艺采用的挤压棒料直接加工,可加工出8种尺寸规格的零件,降低了材料消耗,缩短了加工周期,节省了加工费用,已实现批量生产。 图7 气泵上盖液态模锻件 电器安装基板,如图8所示,材料为6063铝合金,采用液态模锻技术,实现了一模成形两件,将原数控加工的槽沟一次成形,尺寸达到设计要求,简化了该零件的加工工艺,缩短了加工周期,提高了生产效率。 图8 电器安装基板液态模锻件 3、铝合金精密冷挤压工艺应用 变形铝合金薄壁深筒“液压锁缸体”零件,图9所示,原工艺采用棒料直接加工而成,加工难度大、材料利用率低;利用冷挤压技术直接成形,挤压件要求外形及内孔不加工,表面质量要求高,通过工艺及模具设计优化,零件尺寸精度均达到设计要求,内外表面均不需要加工。 图9 液压锁缸体挤压件 手机电池用铝壳毛坯,图10所示,一次冷挤压成形工艺,铝壳壁厚0.3mm,外形尺寸可按要求设计,同时解决了挤压件的表面质量问题,所开发的工艺可用于成型矩形的各种尺寸规格手机电池铝壳。 图10 手机电池壳挤压件 铝合金电器屏蔽罩,图11所示,截面尺寸29×43mm,长度160mm,壁厚1.2mm,采用简单毛坯一次性挤压成形,表面质量好,尺寸精度高。 图11 铝合金电器屏蔽罩挤压件
南昌航空大学 2021-05-04
一种小型精密调平装置
本发明提供了一种小型精密调平装置,包括支撑平台,支撑平台螺纹联接主调整螺杆,主调整螺杆上端端部伸出且紧靠支撑平台上表面连接球铰支座,主调整螺杆下端伸出支撑平台下表面螺纹连接大锥齿轮,大锥齿轮与小锥齿轮相咬合,小锥齿轮的侧部通过驱动轴连接手轮,大锥齿轮的底部连接弹簧预紧组件,主调整螺杆下端端部螺纹副连接主锁紧组件。本发明能快速完成重载工况下的部件调平,同样适用于载荷不对称情况下的调平,且装置结构简单,小巧,调整方便灵活,可成组使用以便于较大平面的调平。
华中科技大学 2021-04-11
低噪声精密运算放大器
低噪声精密运算放大器是现代无线通信雷达电子对抗系系统的前端,在放大信号的同时抑制噪声干扰.提高系统灵敏度。船舶和电子信息等各大军工系统的重点型号中均有应用。
电子科技大学 2021-04-10
高档超精密磨床及LED划片装备
为满足光电通讯、光学、信息等产业中小口径非球面光学玻璃透镜模具产业化的需求,研制了小口径非球面光学玻璃透镜模具超精密数控复合机床,具备纳米级精度斜轴镜面纳米磨削、斜轴磁流变研抛、在线测量补偿加工等功能,为小口径非球面光学透镜模具的产业化制造提供可靠的装备支撑。分辨率10nm,主轴回转精度50nm;加工对象为微小非球面透镜及模具;加工口径10mm以下;加工面形状精度:PV小于300nm ,工件表面粗糙度小于Ra10nm。应用领域包括集成电路(IC)、发光二极管(LED)、光学光电、MEMS、NTC、塑封件(QFN、BGA)、电子陶瓷、通讯、医疗器械等,能切割硅晶圆、砷化镓、陶瓷、石英、PCB板、LED芯片、玻璃、铌酸锂、氧化铝、蓝宝石等。GUI交互界面。具备接触式测高及非接触式测高,刀痕检测,具有切割深度自动补偿,刀片破损补偿功能,能保证切割质量。
湖南大学 2021-04-11
一种超精密工作台
本发明公开了一种超精密工作台,它包括宏运动平台与微位移工作台,其中宏运动平台的导轨形式采用气浮导轨,微位移工作台与宏运动平台连接,并随宏运动平台一起沿 X 向、Y 向移动。微位移工作台中包含压电智能结构,其中该压电智能结构既能感知外界对其施加的力、位移等信号,又能主动地对外界施加力、位移等。此外,压电智能结构不仅可以用于超精密工作台的微位移工作台中,而且也可以制成类似弹簧-阻尼系统的俘能机构,应用在超精密工作台中。本发明可以广泛应用于超精密机床、超精密测量、微电子制造等领域。
华中科技大学 2021-01-12
一种超低频精密主动减振器
本发明提供了一种结构紧凑的超低频精密主动减振器,属于超精密减振领域。该超低频精密主动减振器由负刚度机构与空气弹簧并联组成被动减振单元,由洛伦兹直线作动器构成主动减振单元。负刚度机构是由片弹簧、铰链和刚性杆等组成的压杆结构。负刚度机构安装在空气弹簧的腔室内部,使减振器结构更加紧凑。正负刚度并联使得减振器具有大的承载力的同时具有极低的刚度,大大地降低了其固有频率。洛伦兹直线作动器用于提供主动阻尼,实现主动控制。本发明所提供的超低频精密主动减振器具有极低的固有频率,不仅对高频振动干扰具有良好的隔振效果,还
华中科技大学 2021-01-12
超精密电涡流位移传感器
成果创新点 1.温飘、分辨率、稳定性等指标具有国际领先水平; 2.温度自补偿技术、信号源漂移自矫正技术、噪声抑 制技术等是主要创新点。 技术成熟度 小试中试阶段 市场前景 可用在大型天文望远镜中作为边缘传感器;可以用在 精密车床、电子显微镜、原子力显微镜、共焦显微镜等中。 转化计划 预期转化方式:自主转化寻求投资,已于天使基金接 触。
中国科学技术大学 2021-04-14
超精密电涡流位移传感器
 1.温飘、分辨率、稳定性等指标具有国际领先水平; 2.温度自补偿技术、信号源漂移自矫正技术、噪声抑制技术等是主要创新点。 
中国科学技术大学 2023-05-16
高性能激光精密微加工装备
团队正积极布局研发工业级超短脉冲激光器,并已经突破了一系列关键技术,自主研发的全波段超短脉冲生成技术已处于国际领先水平,可提供覆盖“可见光-近红外-中红外”的超快激光器,多款产品已获得ISO9000质量体系认证以及欧盟CE安全资质认证。主要创新成果为掌握从锁模光开光、超快种子源、光纤放大、谐波产生(倍频)到最后组装工艺一整套完整的超快激光技术方案。目前,商业上的光开关器件大多采用基于半导
南京大学 2021-04-14
首页 上一页 1 2
  • ...
  • 12 13 14
  • ...
  • 222 223 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1