高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
32019金属晶体结构模型
宁波华茂文教股份有限公司 2021-08-23
郑州水热合成反应釜-HZ-100ML
郑州水热合成反应釜(HZ-100ML) 1.用   途     水热合成反应釜是为在一定温度、一定压力条件下合成化学物质提供的反应器。它广泛应用于新材料、能源、环境工程等领域的科研试验中,是高校教学、科研单位、化工实验室进行科学研究的常用小型反应器。   2.特    点       水热合成反应釜采用优质不锈钢加工而成。内胆为聚四氟乙烯材质。外形美观、使用方便。釜体与釜盖拧紧即可起到密封作用、密封效果长期稳定无泄漏。       水热合成反应釜采用外加热方式,以缩小体积,并有利多反应釜处于同一反应操作温度(如将多个反应釜置于烘箱中加热)。   3.主要技术指标   (1).工作温度:≤220℃   (2).工作压力:≤3MPa   (3).升温、降温速率:≤5℃/min   (4).规格25ml,50ml,100ml,200ml、500ml、800ml、1000ml、2000ml、5000ml另可根据用户需求(温度、外形)定做。   4.  操作方法       将反应物系指与釜体内,并保证加料系数小于0.8。当反应物系有腐蚀性时要将其置于四氟衬套内,方可保证釜体不受腐蚀。   水热合成反应釜置于加热器内,按照规定的升温速率升温至所需反应温度(小于规定的安全使用温度)。待反应结束将其降温时,也要严格按照规定的降温速率操作,以利安全和反应釜的使用寿命。当确认腹内温度低于反应物系种溶剂沸点后方能打开釜盖进行后续操作。  
巩义市城区众合仪器供应站 2025-04-27
水制氢工艺
本项目采用了一种新型制氢工艺,该工艺主要包括四部分:1)铁氧化物与水反应得到纯净的氢气;2)一氧化碳还原铁氧化物;3)还原反应产生的二氧化碳与碳反应生成一氧化碳;4)还原气造气过程中所需碳源由煤经过高温炭化得到。整个工艺过程消耗的是煤和水,得到的产物是纯净的氢气、纯净的一氧化碳和煤炭化释放出的煤气(主要成分是甲烷、氢气和一氧化碳,可直接作为燃气使用)。该方法的优势在于:1)不把煤作为燃料,而将其作为制氢的原料,可以实现煤炭中有害物质的集中处理与转化,从而避免煤炭分散燃烧带来的环境污染和高处理成本。2)煤转化为气体燃料,其能量利用效率大大提高,如煤基氢—电联产系统效率可达75%,纯发电效率达到60%,而传统的煤燃烧发电系统的效率只有33%~35%。3)本方法中氢气和一氧化碳分别在不同的反应阶段,由不同的反应器中分别输出,可以直接得到纯净的氢气和一氧化碳,与传统的煤气化制氢工艺相比,减少了分离、净化环节,工艺更简单。4)各种煤经过高温炭化处理后都可以作为反应所需的碳源,而煤气化制氢工艺则对煤种的适应性有较大局限性。已证实了该工艺的可行性与稳定性,项目目前进入进入中试放大研究阶段。
河北工业大学 2021-04-13
蒸馏水器
产品详细介绍蒸馏水器
宁波舜盈机电科技有限公司 2021-08-23
高炉水淬渣
高炉水淬渣质量稳定,采用先进的因巴法工艺水淬,具有玻璃体含量高,XRD图谱中无晶体衍射峰,用其磨制的矿渣微粉水化活性高,是水泥和混凝土的优质材料。
日照钢铁控股集团有限公司 2021-09-09
用于肿瘤病理临床诊断的双光子荧光探针
该成果创造性地利用高阶非线性光学材料获取医学临床诊断的关键信息。利用自主发明的双光子荧光探针与双光子光学CT成像的特性,首次获取了可用于癌症病理组织快速临床诊断的荧光图像。该技术是山东大学晶体材料国家重点实验室于晓强教授团队的原创,国际、国内均没有同类工作。 全新的观测技术:基于荧光探针与光学切片成像的肿瘤病理临床诊断技术。 该成果将直接带动三个高附加值的高技术产业: 新材料产业:双光子荧光探针 新设备产业:临床专用双光子荧光显微镜产业 新技术产业:技术人员培训、临床服务产业 符合临床要求的检测流程:
山东大学 2021-05-11
激光驱动光子对撞机的新方案
北京大学物理学院颜学庆教授和卢海洋研究员领导的课题组提出了激光驱动光子对撞机的新方案,该方案每脉冲可以产生3亿个Breit-Wheeler事件,并且所产生的正负电子对发散角只有7度,具有非常好的准直性。同时,背景噪声可以得到有效抑制,信噪比高达1000:1。研究成果以 “Creation of electron-positron pairs in photon-photon collisions driven by 10-PW laser pulses”为题在线发表在《物理评论快报》(Physical Review Letters)。 根据爱因斯坦质能方程和量子电动力学理论,在一定条件下光子(能量)可以转化成物质,这对研究物质的起因有重要的作用。相关的理论研究始于上世纪30年代,直到1997年美国SLAC实验室才首次在实验中观测到多光子碰撞产生正负电子对的过程。然而,对于两个高能光子的互作用过程,也就是常说的光子对撞机,到目前为止还未能在实验中观测到。在光子对撞机中,光子的互作用的次数与光子数目和光子互作用截面成正比,与光子束的脉冲宽度、两束光子束的交叠面积成反比。在过去实验中不能观测到光子的互作用过程是因为已有伽马射线源的流强和亮度还达不到要求。 近年来,随着激光技术的发展,特别是10拍瓦(1拍瓦=1e15瓦)激光器的建成,激光光强将可以达到1e23W/cm3以上。当如此高强度的激光与物质相互作用时,大部分激光能量被吸收并转化成伽马射线辐射源,如果可以有效控制伽马射线的发散角,辐射的伽马射线将会达到前所未有的流强和亮度。 团队研究人员在前期的工作中对产生超高亮度伽马光源进行了深入的研究,首次从理论上系统阐明了微通道结构靶中,纵向电场主导了电子的加速过程,同时电子的横向加速可以得到有效的抑制,因此可以获得高准直性的电子束,当这些电子束在横向场中的相位发生反转时,电子就会在管道边界处产生强伽马辐射。由于电子的发散角决定了伽马辐射的发散角,因此可以获得准直性非常好的γ-ray辐射源。数值模拟中10PW激光所能获得的发散角小于3度,亮度比之前研究报道结果高出两个数量级的伽马辐射源。图1. 激光驱动光子对撞机产生正负电子对的方案设计图2. 本方案可以获得高出之前2-3量级的伽马光源亮度 本工作即基于以上研究成果,将该超高亮度的伽马射线应用于光子对撞机。理论计算结果表明,该方案可以获得超高信噪比(>1000:1),且每一发正负电子对信号(>1e8)远高于现有测量技术的探测极限。因此,通过该方案可以在实验室中验证光子互作用过程中由能量到物质的转换过程,将提供激光驱动光子对撞机研究的新途径,也将极大的促进双光子BW物理的发展。未来有望依据本方案建设基于重频拍瓦飞秒激光的高亮度伽马源及其应用装置。 北京大学物理学院博士后余金清为论文第一作者。颜学庆教授和卢海洋研究员为通讯作者。论文合作者还包括北京大学的陈佳洱院士、马文君研究员,広岛大学的T. Takahashi教授,高能物理所的黄永盛研究员。该研究工作得到国家自然科学基金、科技部重点研发专项、挑战计划和中国博士后科学基金的联合资助。相关模拟工作得到北京大学高性能计算平台的支持。相关文章链接:Phys. Rev. Lett. 122, 014802 (2019) https://doi.org/10.1103/PhysRevLett.122.014802Appl. Phys. Lett. 112, 204103 (2018) https://aip.scitation.org/doi/abs/10.1063/1.5030942
北京大学 2021-04-11
用于肿瘤病理临床诊断的双光子荧光探针
"该成果创造性地利用高阶非线性光学材料获取医学临床诊断的关键信息。利用自主发明的双光子荧光探针与双光子光学CT成像的特性,首次获取了可用于癌症病理组织快速临床诊断的荧光图像。该技术是山东大学晶体材料国家重点实验室于晓强教授团队的原创,国际、国内均没有同类工作。该成果将直接带动三个高附加值的高技术产业: 1. 新材料产业:双光子荧光探针 2. 新设备产业:临床专用双光子荧光显微镜产业 3. 新技术产业:技术人员培训、临床服务产业 "
山东大学 2021-04-10
混沌辅助的光子动量快速转换的新原理
光子首先从纳米波导直接折射进入微腔混沌模式,其角动量较小,对应于光子在微腔界面的反射角较小。与旋转对称微腔不同,混沌运动使得光子角动量不断发生变化。尤其引人注目的是,微腔内的混沌光子运动并非毫无规律,而是遵循特定的短时动力学规律,从而实现入射光子的角动量在皮秒时间尺度内(一皮秒相当于一万亿分之一秒)随混沌运动从小到大的快速转换。当混沌光子的角动量接近回音壁模式角动量时,二者之间可以发生共振隧穿过程。得益于光子角动量在混沌运动中的快速转换,此创新方法可以实现纳米尺度波导与回音壁光学模式的超宽带耦合。
北京大学 2021-04-11
多通道GHz近红外单光子探测器
基于InGaAs-APD的超灵敏高速光电探测模块,探测波段覆盖900 -1700 nm,探测效率最高可达25%。采用先进的正弦频谱滤波技术,支持GHz以上的单光子探测。此外,得益于先进的噪声抑制和弱信号处理技术,GHz 单光子探测器在如此高的工作频率下依然可以保持5×10-6/pulse的暗计数水平,以及小于5%的后脉冲概率。而多通道GHz单光子探测器的集成,可实现高速的光子数可分辨探测,拓展量子探测器的动态范围。 相关技术指标: 通道数: ≥4 工作频率:1-2.5GHz 探测效率:1-25% 连续可调 暗计数: 工作频率1-1.5GHz:≤ 5×10-6/pulse 工作频率2-2.5GHz:≤ 1×10-5/pulse 后脉冲: ≤ 5% 死时间: 3 ~ 10 ns (暗计数后脉冲指标均在10%探测效率下测得) 技术创新点: 国际上首次提出“一种低时间抖动低噪的吉赫兹单光子探测方法”,通过频谱分析的方法将低通滤波和平衡相结合,实现了高速高性能InGaAs APD单光子探测,被国内外单光子探测领域的专家同行广泛引用。基于该技术所研制的GHz单光子探测器通过华东电子测量仪器研究所光电计量校准中心(国防科技工业光电子一级计量站)鉴定检测,性能指标达到国际同类仪器先进水平。“单光子探测关键技术与仪器开发”获2012年上海市科技发明二等奖(第十完成人)此外,在此基础上,将室温单光子探测的速率提升到GHz以上,与国际水平相对比,工作频率提升到了1.5GHz,后脉冲误计数概率亦有所下降,探测效率为21%时,后脉冲概率仅为1.4%。
上海理工大学 2023-08-08
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 50 51 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1