高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
衍射
光学
光束整形技术
1.痛点问题 激光广泛应用在制造、传感、医疗、科研、军事等诸多领域。对不同应用,除功率、波长、模式等有不同要求外,对激光光斑形状也逐渐提出整形要求,以适应性能不断提高的制造、传感等需求。例如在激光焊接、激光退火、激光剥离等需要圆形、矩形(方形)、线形且平顶分布的光斑;在激光打孔、激光切割等需要轴向多焦点、长焦深分布的光斑;在激光热负荷模拟或激光热处理中,需要特定形状和光强分布的光斑以匹配复杂零件并模拟实际工况等。 衍射光学是实现光束整形的重要技术手段,但在国内尚未广泛应用,例如在激光制造领域,大多系统直接利用激光聚焦光斑,少部分利用微透镜阵列、微柱镜阵列等折反射器件进行光束整形,但这种方案所能实现的光束整形通常是产生圆形、方形或矩形光斑,不能实现任意形状的光斑。此外,整形光斑边缘较为平缓不够陡峭,平顶性能不够好,存在较大的光强起伏;受限于设计与制造,按照传统方法设计,衍射光学整形光斑尺寸受限,通常包含大量散斑,且存在明显的中心零级等,或者减小线宽至数个波长以产生大角度光束整形光斑,但数个波长的线宽无法利用国产设备进行制造。 2.解决方案 本成果的衍射光学器件(DOE),是基于光的标量衍射理论,利用计算机辅助设计、并用大规模集成电路制作工艺,在基片上(或传统光学器件表面)刻蚀产生两个或多个台阶深度的浮雕结构,形成纯位相、同轴再现、具有高衍射效率的一类光学器件。利用衍射光学器件已实现了诸多功能,包括光束整形、点阵产生(包括大角度、超分辨等)、长焦深(包括中空、轴上多焦点)等,为激光制造、三维测量、超分辨显微成像、流式细胞仪等系统提供新颖解决方案。创新性地采用球面波入射(或折衍混合)、特定振幅相位约束等方法,扩大了有效衍射场,对入射波前畸变、加工误差不敏感;抑制了散斑,提高了光束整形性能,提升了数字全息显示的分辨率;实现了大角度任意点阵、白光点阵等;实现了不同排列形状的超分辨点阵;实现了多种长焦深、中空长焦深、轴上多焦点等轴向光场分布。 3.合作需求 以专利许可、技术转让、技术入股等方式进行合作,特别是具有国内高端激光制造设备公司相关资源的优先考虑,确定应用场景,研制衍射光学光束整形器件、模组和系统。
清华大学
2023-01-06
医学
影像
的智能处理、融合和分析
一、项目简介 磁共振成像以其具有多模态成像、高分辨及无辐射伤害等优点,在临床医学影像中具有无可替代的地位。然而较慢的成像速度及易受各种伪影干扰是其主要缺点。另一方面,随着临床上对磁共振成像需求的急剧增长,诊断医生的缺口越来越大,并严重影响病人得到及时、准确的诊断。因此,在磁共振成像中引入以深度学习为代表的智能技术,一方面用于加速成像采集速度及提高成像质量,另一方面用于进行智能诊断,解决临床医生人力不足、误诊率较高的问题。 二、前期研究基础 基于我们在磁共振成像方法设计、超分辨率重建及临床应用等方面的跨学科研究优势,我们利用深度学习技术对磁共振成像的各个方面进行整合优化设计,并取得许多重要的初步成果,具有良好的前期工作基础。 三、应用技术成果 我们在深度学习与超快速磁共振成像方面的结合进行了深度研究,并取得许多重要成像。我们研究了基于深度学习的超快速多参数磁共振成像重建,并取得良好的效果,如图1所示。我们还研究了利用深度学习对磁共振成像进行无参考扫描的扭曲校正,如图2所示。
厦门大学
2021-04-11
基于全景
影像
的街景面片优化方法
本发明公开了一种基于全景影像的街景面片优化方法,包括以下步骤:步骤 1:获取车载 LiDAR 点 云数据和全景影像,并将全景影像与车载 LiDAR 点云数据进行配准;步骤 2:将车载 LiDAR 点云数据 分割为多个面片,获得面片与全景影像站点的对应关系,将面片投影到全景影像上,得到面片对应的透 视平面影像;步骤 3:对透视平面影像进行分析,删除树木点,并进行面片拉伸。本发明基于全景影像 优化街景面片,在点云数据的结果上进一步提高面片的精度和准
武汉大学
2021-04-14
深圳市长丰
影像
器材有限公司
深圳市长丰影像器材有限公司成立于2011年,总部设立在广东深圳,是一家集产品研发、生产、销售于一体的高新技术企业,多年来一直致力于影像器材以及声音技术的开发制造。 长丰公司长期服务于摄影摄像和广播电视行业,为主流媒体、传媒工作室以及广大的摄影摄像爱好者提供从影像稳定系统到声音输入输出系统的整体解决方案。公司目前拥有三个自主品牌:Saramonic枫笛、BOYA博雅、SEVENOAK七棵橡树,自主研发和生产的产品销往全球100多个国家和地区。 经过近10年的发展,目前长丰拥有占地万余平米的生产基地和产品研发中心,配备了国内外最先进的研发测试设备和专业声音实验室,建立了专业的研发团队和完善的质量管理体系。2013年,长丰公司通过ISO9001质量管理体系认证,出口销售的产品均获得相应的质量认证如CE、ROHS、FCC、NCC、KCC、TELEC、EN300等。经过多年创新和沉淀,公司拥有百余项国内外各类发明和创新专利,2018年,公司荣获“国家高新技术企业”认证,并得到深圳市政府和科创委的大力扶持。
深圳市长丰影像器材有限公司
2022-07-04
医学
影像
设备学综合电路实验箱
是新华医疗强大X线机研发团队专门为高校医学影像专业教学设计的又一力作,本实验台综合了单个实验箱的实验功能,综合性强,可使学生在比较中进行实验,进而提高学生综合运用知识的实验效果,让学生亲身体验,学以致用。主要实验模块包括:整流电路实验、高频X线机逆变频率电路实验、旋转阳极启动与保护电路实验、磁饱合稳压电路实验、曝光限时电路实验、管电压管电流测量实验、接地电阻测量实验、X线机发生器基本工作原理及控制实验等。
山东新华医疗器械股份有限公司
2022-11-08
大口径
光学
加工平台
已有样品/n该项目采用自主设计装置和编写的软件,实现嵌入式控制,能够对超短脉冲的脉冲宽度和相位做出精确的测量:波长范围:400nm-2000nm,脉冲宽度15fs-20000fs,重复频率:同步测量-100MHz。目前国内相应的相应设备均需尽快美国和德国产品,单机价格在15万元左右,且计算程序运行电脑需要另配。该仪器与其他产品在性能相比接近的同时,实现直接的控制与显示。
华中科技大学
2021-01-12
非线性
光学
超构表面
光学超构材料(Metamaterials)的快速发展为人类提供了在亚波长尺度下调控光的传播的丰富手段。很多新奇的光物理现象,例如负折射、超分辨透镜和隐身斗篷等都可以通过设计功能基元的有效介电常数来实现。在光波段,三维纳米加工的困难和金属结构的光损耗不利于超构材料的广泛应用。自二维超构表面(Metasurface)概念提出以来,超构表面在降低三维超构材料加工难度、提高光学效率方面,特别是控制光的功能基元的几何位相等方面取得了众多突破性进展。近来,超构表面在高效率全息成像、超薄光学波片、高数值孔径的平面透镜等领域已经表现出极高的应用潜力。超构表面的研究进展极大丰富了利用超构功能基元实现对电磁场 (可见光、近红外光,太赫兹、微波等波段) 进行调控的手段,为设计新型光学元件提供了新技术。 当前,超构表面的研究主要集中在线性光学的范畴。但毫无疑问,非线性光学响应例如倍频、三倍频、光致折射率变化等过程,将为光学超构表面的功能基元赋予新的可调控自由度。此综述文章从非线性光学超构表面的材料选择、对称性,非线性手性光学超构表面,非线性光学相位调控,非线性光光束调控,光开关与调制五个方面详细介绍了非线性光学超构表面的最新进展。文章最后对非线性光学超构表面在太赫兹非线性光学、量子信息处理等领域的潜在应用的前景作了展望。
南方科技大学
2021-04-13
一种
光学
调制模块
本发明公开了一种光学调制模块,可产生 FSK/ASK 正交调制信 号,用于传输信号和标签;包括激光器、双平行调制器、90°相位调 制器、余弦信号发生器、乘法器和两个信号发生器;其中,一个信号 发生器产生曼彻斯特信号,另一个信号发生器产生双极性 NRZ 码;余 弦信号发生器产生两路余弦信号,一路余弦信号受曼彻斯特信号调制 90°相位后生成第一控制信号,另一路余弦信号作为第二控制信号; 双极性 NRZ 码与曼彻斯特信号相乘生成第三控制信号;双平行调制器 在三路控制信号的调制下,对激光器输出的激光进行调制
华中科技大学
2021-04-14
快速响应型液晶
光学
器件
本发明成果包括一种快速响应的光开关,采用两基板同为周期交替且相邻区域取向方向相互垂直的水平取向液晶盒:液晶盒盒厚为5±2μm,两个相邻取向的宽度之比为1:1;包括上下二片ITO 玻璃基片及涂覆的光敏取向剂,并经过线偏振紫外或蓝光片对ITO 玻璃基片上光敏取向剂进行曝光,赋予两基片预设的取向方向;灌入双频液晶,制成一个可调节的液晶光栅,实现光开关功能,具有
南京大学
2021-04-14
纳米
光学
腔的机理研究
精准制备原子级平整的纳米光学腔,实现了对亚皮米厚度变化的原位测量,比以往报道的等离激元尺子的亚纳米精度高了三个数量级,创造了新的世界记录,为原子/分子尺度上极其微弱的物理和化学过程的探测提供新的方案。 一、项目分类 重大科学前沿创新 二、技术分析 光学腔在激光器的发明、腔量子电动力学与精密测量等方面发挥了极其重要的作用。减小光学腔的模式体积可以提高光与物质相互作用的强度,极大地拓宽光学腔的应用领域。然而,光学腔的小型化面临光学衍射极限物理规律与现代制造技术精度的双重限制。该成果主要创新性与先进性如下: (一)精准制备原子级平整的纳米光学腔,实现了对亚皮米厚度变化的原位测量,比以往报道的等离激元尺子的亚纳米精度高了三个数量级,创造了新的世界记录,为原子/分子尺度上极其微弱的物理和化学过程的探测提供新的方案; (二)利用纳米光学腔对固态量子体系的物态进行调控,实现室温下纳腔中光与物质的强耦合,推动全固态纳腔量子光学的发展,为小型化集成量子光学器件与芯片的开发提供新的途径; (三)证实纳腔量子光学体系的响应速度是超快的,可达到数十飞秒,比高品质光学微腔体系快几个数量级,是发展超高带宽信息器件的理想平台。
武汉大学
2022-08-15
首页
上一页
1
2
3
4
5
6
...
24
25
下一页
尾页
热搜推荐:
1
第62届高博会将于2024年11月重庆举办
2
2024年云上高博会产品征集
3
征集高校科技成果及大学生创新创业项目