高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于单光场相机的微尺度流动三维速度场测量装置和方法
本发明公开了一种基于单光场相机的微尺度流动三维速度场的测量装置及方法,其中测量装置包括双脉冲激光器、荧光显微镜、相机系统、同步控制器和计算机,其中计算机用于存储CCD相机获得的光场图片;选择两帧时间间隔为Δt光场照片,利用计算的点扩散函数,反卷积重建出示踪粒子的三维位置信息;通过三维互相关算法得出微流场的三维速度场信息。本发明采用单相机系统与传统荧光显微镜结合,实现微尺度流场的三维速度场测量,系统无需深度扫描,可以对非定常流动或非周期性流动的流场测量。
东南大学 2021-04-11
以PMMA/PAN核壳聚合物为前驱体制备微炭纳米空心球
炭材料因其具有丰富的组织结构和许多优异的性能而获得了广泛的应用,焦炭、炭黑、活性炭、炭纤维等炭材料早已深入到社会生活的各个领域并为人们所熟知,炭富勒烯及炭纳米管的发现引起了人们对纳米级炭材料的研究热潮。炭纳米空心球是一种球状炭纳米材料,以其独特的空心、炭外壳结构,具有高比表面积、低密度、高强度及化学稳定性等特性,可以作为纳米材料的包裹体、催化剂载体、吸附剂等,已经引起了人们的广泛关注并着力于炭纳米空心球的制备。 该方法先以无皂乳液聚合制备出PMMA微纳米球,再在其外表面无皂乳液聚合一层聚丙烯腈,得到PMMA/PAN核壳聚合物微纳米粒子,冷冻干燥后得到核壳聚合物粉末,再将其依次经过低温稳定化及高温炭化处理,得到炭微纳米空心球,得到的炭微纳米空心球粒径均一,大小范围在100~300nm之间可调,壳层厚度在10~50nm之间可调,并且该炭微纳米空心球具有可石墨化性能,进一步高温石墨化即可获得具有多层石墨层片结构的石墨纳米空心球。本方法具有简单方便、产率高、质量稳定,球体大小及厚度可调的优点,获得的空心球可作为微纳米物质包裹体及催化剂载体。
上海理工大学 2021-04-11
基于石英晶体微天平的生物医学农业等多领域快速低成本检测技术
成果描述:通过对QCM(石英晶体微天平)技术和检测标的物的化学特性的研究,课题组成功研制出一种基于石英晶体微天平(QCM)的生物医学农业等多领域快速低成本检测技术新型自动检测系统。课题组与中国农业科学院和四川大学生物治疗国家重点实验室建立了良好的长期合作关系。所研制的系统已经在中国农业科学院和四川大学生物治疗国家重点实验室的配合下完成了测试和实验,拿到了大量实验数据资料,完成了系统效能评估。经过实验得到数据说明了课题组研制的测试系统具有实时性好、分辨率高、成本低、体积小、操作方便等优点。该测试系统的检测精度可以达到纳克级别。 以在重金属检测领域中的应用为例,国外目前对重金属离子的定量检测主要有紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)和电感耦合等离子质谱法(ICP-MS)等。我国对重金属污染十分重视,目前国内对重金属离子的定量检测主要还是借鉴国外一些常用的检测方法。但是这些检测方法价格普遍昂贵、操作相对繁琐且检测限仅可达纳克(ng)级。国家每年都要花费大量的财力、人力和物力来检测各种领域里的重金属。该测试系统的研制成功将会提供一种全新的、低成本的、简单有效的检测重金属的方法。该成果不仅可以应用于农产品中的重金属离子检测,其在环保和生化领域同样拥有极大的应用前景。
电子科技大学 2021-04-10
规模化微纳纤维在口罩滤芯材料生产中的应用及产业化
N95口罩的关键技术在于其致密、能有效隔离病毒的滤芯层,一般的N95口罩是5层滤芯层、普通口罩可能只有两层。南京工业大学陈苏教授课题组的新技术让N95口罩生产提质增效,做滤芯的新材料只需3层就可以生产N95了。他们的新技术全称叫“熔喷无纺布材料和微流体气喷纺丝技术”。“我们团队前期一直致力于新型纺丝技术和无纺布材料的开发,研究出了微流体气喷纺丝技术,可以实现超细纤维的制备,平均直径65纳米,是目前纺丝技术中生产纤维最细的,过滤隔离病毒的效果也就更好。”陈苏介绍,传统的纺丝技术生产出的纤维,一般直径在几百纳米,而气喷纺丝技术所制备的纤维直径仅几十纳米,可以更好地隔离病毒,将气喷纺丝的纤维膜负载在传统的无纺布上,就实现了更优效果的N95口罩滤芯层的制备。“也就是说,N95一般是5层滤芯层,普通口罩可能只有两层,那么,用我们的材料(做成滤芯层)只要3层就相当于N95了。”陈苏团队近年来一直致力于微流体纺丝和微流体气喷纺丝工作的研究,前期通过纺丝参数的优化、纺丝体系的探索制备了一系列功能纤维材料,其成果日前在国际材料重要期刊《Advanced Materials》(先进材料)上发表。基于前期的研究基础,陈苏教授掌握了纺丝关键技术、纺丝设备开发技术和功能纤维原理,为其产业化奠定了基础。点击查看原文
南京工业大学 2021-04-10
利用聚二甲基硅氧烷疏水材料板分离微丝菌的方法
本发明提供一种利用聚二甲基硅氧烷疏水材料板分离微丝菌的方法,该方法的步骤是将污水处理厂曝气池中已发生以微丝菌为优势菌的膨胀污泥混合液滴加在具有凹槽结构的聚二甲基硅氧烷疏水材料板上,冷藏放置保存后,采用氯化钠溶液对聚二甲基硅氧烷疏水材料板进行冲洗,利用相似相容原理实现微丝菌从活性污泥混合液中的分离。本发明的效果是该方法操作简单易行,可快速地实现微丝菌从活性污泥混合液中的分离,克服了微丝菌从活性污泥系统中分离困难的问题,可将分离有微丝菌的聚二甲基硅氧烷疏水板上置于培养基中,进行微丝菌的纯培养,与传统的稀释平板法和涂布平板法等微丝菌纯培养方法相比,加快了微丝菌菌种的筛选,可将微丝菌的纯培养周期缩短3~6周。
天津城建大学 2021-04-11
一种多壳层核壳微纳结构Cu2O的制备方法
“一种多壳层核壳微纳结构Cu2O的制备方法”属于半导体领域。现有方法对设备要求较高,过程复杂,难以控制成本,严重影响Cu2O样品的应用范围。本发明特征在于:按照硫酸铜与柠檬酸三钠的摩尔浓度比范围12∶4~12∶18,硫酸铜与葡萄糖的摩尔浓度比范围12∶2~12∶22,将柠檬酸三钠溶液加入硫酸铜溶液中,充分络合后加入葡萄糖溶液;调节溶液pH值至12.3~14.0;于50°C~95°C反应1.5h~6.0h;反应结束后冲洗、烘干,即得所需产物。该方法(采用葡萄糖作还原剂的化学浴沉积法)与其它液相制备核壳
安徽建筑大学 2021-01-12
一种磁纺制备石墨烯/聚合物有序微纳米复合纤维的方法
本发明的目的在于克服现有技术的不足,提供一种磁纺制备有序石墨烯/聚合物微纳米复合纤维的方法,该方法利用磁体旋转产生的交变磁场力作用,拉伸含石墨烯、聚合物混合液的磁流体射流进行纺丝,整个过程无需高压电作用,有效降低生产成本和安全隐患,且制得的纤维有序排列,所得有序石墨烯/聚合物微纳米复合纤维具有很好的应用前景。利用高分子聚合物如聚氧化乙烯、聚偏氟乙烯、聚己内酯、聚苯乙烯、聚甲基丙烯酸甲酯等制备而成的微纳米纤维具备高比表面积、高长径比以及多孔性等特点,与块体材料的光、热、力、电、磁等性质有明显的区别,因此在微纳光电子器件、过滤分离、生物传感以及组织工程等诸多领域有广泛的应用。
青岛大学 2021-04-13
一种大规模磁纺设备及用该设备制备微纳米纤维的方法
该发明公开了一种大规模磁纺设备及使用该设备制备微纳米纤维的方法,该设备包括支架,给料装置,纺丝喷射装置和水平设置的滚筒式收集装置,收集滚筒的表面固定有提供磁场的条形永磁铁,纺丝喷射装置有多个喷头,排成一列,指向条形永磁体,被固定在可沿滚筒中轴线方向做往复运动的驱动器上。该设备以磁场力代替电场力,在交变磁场力作用下拉伸铁磁流体制备磁性微纳米纤维,整个过程无需高压电作用,有效降低生产成本和安全隐患,同时可批量连续生产微纳米纤维,且制得的纤维排布有序,产量高适合大规模生产。
青岛大学 2021-04-13
一种英文微博中地理兴趣点抽取和感知其时间趋势的方法
本发明公开了一种抽取英文微博中地理兴趣点和感知其时间趋势的方法,本发明首先对一条英文微 博进行扫描,确定其中包含的候选地理兴趣点;然后从微博中抽取词汇,语法和 BILOU 模式标记三类 特征;基于三类特征,运用时间趋势地理兴趣点标记器,对微博中的候选地理兴趣点进行确定和感知其 对应的时间趋势。依照本发明所提供自动确定英文微博中涉及的地理兴趣点以及其时间趋势的技术方法, 可以基于精细度地理位置来进行个性化的服务和开展市场营销。由于地理兴趣点知识库的构建利用了位 置社交网络,不需人工进行生成,而且三类特征信息具有普遍性,使本发明可以广泛应用于同类各种英 文微博服务平台,具有广泛的实际意义和商业价值。
武汉大学 2021-04-13
一种基于金属微纳结构天线阵列的反射式离轴透镜
本发明提供一种基于金属微纳结构天线阵列的反射式离轴透镜,包括衬底层、反射层、光学薄膜匹 配层和金属微纳结构天线层。每一个金属微纳结构天线的朝向均不同,通过特定排布,可实现将平行入 射的激光反射汇聚在与入射光束同侧的任意方向上,可应用于激光离轴光学系统中。由金属微纳结构天 线阵列构造的反射式离轴透镜,不仅可连续调制入射光的位相,且仅需简单的一次光刻工艺步骤即可制 造完成,因此具有设计灵活、加工简单、结构紧凑等突出优点。
武汉大学 2021-04-13
首页 上一页 1 2
  • ...
  • 94 95 96
  • ...
  • 100 101 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1