高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
建立高通量类器官芯片平台
本项目构建高通量自动化智能化类器官芯片诊疗平台,并利用细胞数字模型分析致病分子,为类器官芯片药物验证系统提供肿瘤靶向基因相关药物,从而实现整个平台的自动完善。 一、项目分类 关键核心技术突破 二、技术分析 恶性肿瘤精准治疗亟待建立能反映个体差异、尽量复制患者原始肿瘤组成及其微环境、快速、精准、性价比高的高通量药物筛选体系。类器官是由干细胞在体外3D培养条件下分裂分化形成的一种类似器官的生物结构,能够重现器官的功能,提供一个高度相似的生理系统。虽然具有敏感性高、特异性强,预测率高等特点,但当前类器官技术仍面临手动化、欠智能、个体差异大、类器官单体对肿瘤异质性还原度低等不足。本项目构建高通量自动化智能化类器官芯片诊疗平台,并利用细胞数字模型分析致病分子,为类器官芯片药物验证系统提供肿瘤靶向基因相关药物,从而实现整个平台的自动完善。该平台解决恶性肿瘤药物筛选周期长、费用高、针对性差,已筛选应答率低、治愈率低等问题;在药物投入临床试验前合理规避风险,有效降低临床试验成本和时间;标准化制备过程,建立统一合理的类器官库,方便使用;有效地为病人提供定制化服务,指导临床用药。从医疗诊断治疗与商业化需求综合维度分析,本平台系统是融合了器官芯片和3D肿瘤模型技术双重优势的生物芯片诊疗一体化技术,有望迎来规模化、市场化和应用化。
北京理工大学 2022-08-17
一种 IC 芯片剥离装置
本发明公开了一种 IC 芯片安全剥离装置,包括安装板、位置调整机构、滑台机构、顶针机构以及真空发生器;所述顶针机构包括:套筒,安装于滑台上;直线电机,安装于套筒内,其控制端连接外部控制中心的输出端;直线传动机构,安装于套筒内,其下端与直线电机的输出轴相接;力传感器,安装于直线电机的输出轴和直线传动机构之间,其信号输出端连接外部控制中心的输入端;顶针座,安装于套筒顶部,其表面开有气孔,通过该气孔与真空器气管连接;顶针夹持件,安装于顶针座内,与直线传动机构的上端相接;顶针,被顶针夹持件夹持。本发明采用闭
华中科技大学 2021-04-14
一种红外液晶相控阵芯片
本发明公开了一种红外液晶相控阵芯片。该芯片包括电控液晶调相微柱阵列;其包括液晶材料层,依次设置在液晶材料层上表面的液晶初始取向层、电隔离层、图形化电极层、基片和红外增透膜,以及依次设置在液晶材料层下表面的液晶初始取向层、电隔离层、公共电极层、基片和红外增透膜;图形化电极层由阵列分布的子电极构成,每个子电极均由正方形或长方形导电膜构成;电控液晶调相微柱阵列被划分成阵列分布的电控液晶调相微柱,其与子电极一一对应,单个
华中科技大学 2021-04-14
技术需求:公司产权保护,芯片加密。
公司产权保护,芯片加密问题。
山东沂川电子有限公司 2021-06-15
CMOS 图像传感器芯片设计
成果与项目的背景及主要用途: 人类通过视觉系统获取的信息占获取信息总量的 80%以上,如果说计算机相当于人类的大脑,那么图像传感器则相当于人类的眼睛。图像传感器作为图像信息获取最重要和最基本的技术在信息世界中将占据着极其重要的地位。半导体图像传感器相比传统的胶片成像具有可实时处理和显示、数字输出、便于储存和管理等诸多优势,正在迅速成为图像传感器发展的主导力量。CMOS 图像传感器相对于 CCD 图像传感器具有单片集成、低功耗、低成本、体积小、图像信息可随机读取等一系列优点。在手机拍照、PC 摄像、机器视觉、视频监控等诸多领域已经取代了 CCD 图像传感器。 技术原理与工艺流程简介: (1)时间延迟积分型 CMOS 图像传感器芯片通过 0.18µm 1P4M CMOS 工艺完成了对最高 128 级线阵长度为 1024 像素的TDI 型 CMOS 图像传感器芯片的设计、投片和测试工作。 (2)具有紧凑读出的多次积分动态范围扩展 CMOS 图像传感器提出了一种通过多次积分扩展动态范围的方法,采用紧凑读出方式,以降低对对读出电路的工作速度要求。成功流片 128×128 阵列原型,动态范围可以扩展39dB,像素读出时间相对于滚筒是曝光增加了 3 倍。 应用前景分析及效益预测: 该领域开始向着高清专业摄像、高精度工业和医疗成像、抗辐射太空成像等专业高端领域迈进。CCD 传感器的衰退之势难以挽回,CMOS 将在未来几年保持优势地位。2015 年,CMOS 出货量将达到 36 亿个,份额达 97%;而 CCD 出货量将下降到只有 9520 万个,占 3%份额。 应用领域: CMOS 图像传感器广泛应用于消费类、工业和科技等各个领域。民用领域:拍照手机、数码相机、可视门镜、摄像机、汽车防盗等;工业领域:生产监控、安全监控等。 技术转化条件: 四十平方米以上的办公用房,电脑、工作站若干,相应软件。也可以和 RFID天线制造单位,卡片封装单位共同合作。 合作方式及条件:根据具体情况面议
南开大学 2021-04-11
有关微腔非线性光学的研究
左图:表面二次谐波效应示意图;右图:光学微腔增强表面非线性效应。 二阶非线性光学效应是现代光学研究与应用中最基本、最重要的非线性光学过程之一,被广泛地用于实现频率转换、光学调制和量子光源等。由于结构反演对称性的限制,常用的硅基光子学材料往往不具备二阶非线性电偶极响应。借助材料的表面或界面,这种反演对称性可以被打破,进而诱导出二阶非线性光学响应。然而,传统的表/界面非线性光学研究存在两个重要挑战:一是非线性转换效率极低,即使在高强度的脉冲光激发下也仅能产生极少量的二阶非线性光子;二是体相电四极响应严重地干扰表面对称性破缺诱导的非线性信号分析。 该项工作中,北京大学课题组利用超高品质因子回音壁光学微腔极大增强光与物质相互作用的优势,在二氧化硅微球腔中获得了高亮度的二次谐波和二次和频信号。为了充分发挥微腔“双增强”效应,研究人员发展了一种动态相位匹配方法,利用光学微腔中热效应和光学克尔效应的相位调制,高效地实现了基波和谐波信号同时与微腔模式共振。实验上获得的二次谐波转换效率达0.049% W-1,相比传统表面非线性光学,该效率增强了14个数量级。左图:实验获得的激发光和二次谐波光谱图;右图:动态相位匹配过程二次谐波功率变化。 研究人员进一步通过对基波偏振和二次谐波模式场分布的测量分析,成功提取得到只有表面对称性破缺诱导的非线性信号,排除了体相电四极响应的干扰。这种表面对称性破缺诱导的非线性信号有望作为一种超高灵敏度的无标记“探针”,用来检测和研究材料表面分子的结构、排布、吸收等物理与化学性质,为表面科学研究与应用提供了一个全新的物理平台;同时,该项研究发展的动态相位匹配机制具有普适性,可进一步推广到不同材料、不同形状的光学谐振腔中,有望在非线性集成光子学中发挥重要作用。
北京大学 2021-04-11
飞秒-纳米时空分辨光学实验系统
为了更加直观地探究纳米世界,大量研究者致力于发展高时间-空间分辨能力的微纳探测技术,由龚旗煌院士负责的“飞秒-纳米时空分辨光学实验系统” 国家重大科研仪器研制项目正是围绕这一目标开展工作。近日,该重大仪器项目在基于超快光电子显微镜技术实现表面等离激元的多维度探测方面取得重要进展,相关成果于2018年11月19日发表在《自然通讯》 杂志(Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes, https://doi.org/10.1038/s41467-018-07356-x)。 基于金属纳米粒子的局域表面等离激元因其高局域强度,小局域尺度,高灵敏度等特点,被大量应用在不同领域。但是,几个飞秒的超短模式寿命(dephasing time)大大限制了其应用的广泛性和实用性。该工作设计的多层结构实现了局域表面等离激元和传播表面等离激元的强耦合(图1(a))。动态数值模拟结果也清晰地证明在强耦合下局域表面等离激元模式和传播表面等离激元模式之间的能量交换。近场方面,光电子显微镜对表面等离激元模式进行直接成像,大大突破了原有的远场探测技术的限制。并且结合不同激发光源,实现不同维度的探测。结合波长可调的激光光源,光电子显微镜在频域记录下表面等离激元模式随波长变化的强度演化过程(图1(b))。结合超快泵浦探测技术,光电子显微镜在时域记录下表面等离激元模式随时间变化的演化趋势。该工作更加深入并直观地探测强耦合体系中的能量转换过程,并通过强耦合中失谐量的改变实现模式寿命的操控,相较于未耦合的局域表面等离模式,强耦合的模式寿命由6飞秒(10-15秒)提高到10飞秒。这一研究成果对进一步发展基于表面等离激元的人工光合成、生物传感等应用具有重要的指导价值。图1、(a)光电子显微镜和多层结构示意图,(b)远场和近场探测曲线、不同波长激光激发下光电子显微镜记录的局域表面等离激元模式分布图。 此研究是由北京大学和日本北海道大学共同合作完成,北京大学物理学院博士生杨京寰和重大仪器项目的国际合作者、北海道大学助理教授孙泉为该文章的共同第一作者,北京大学龚旗煌院士和北海道大学Misawa教授为共同通讯作者。除了自然科学基金委的国家重大科研仪器研制项目,该工作还得到了科技部、北京大学人工微结构和介观物理国家重点实验室、极端光学协同创新中心、“2011计划”量子物质科学协同创新中心、日本文部科学省及学术振兴会、北海道大学纳米技术平台等单位的支持。目前国家重大科研仪器研制项目“飞秒-纳米时空分辨光学实验系统”的研制正在有序推进中,已经取得了一批包括此工作在内的阶段性成果。该实验系统的核心仪器是附带低能电子显微功能的光电子显微镜(PEEM), 其激发光的波长覆盖范围从极紫外到近红外(图2)。下一步该实验系统有望在二维材料、光电材料与器件、表面介观物理等研究领域大显身手、发挥积极作用。图2、北京大学研究团队的飞秒纳米时空分辨系统
北京大学 2021-04-11
飞秒-纳米时空分辨光学实验系统
该实验系统能够同时实现几个飞秒的超高时间分辨率和四纳米的超高空间分辨率,成为介观光学与微纳光子学研究的强大实验测量手段。
北京大学 2021-04-11
非线性光学准晶超构表面
提出并制备了非线性光学准晶超构表面,并研究了超构单元局域对称性和排布方式的全局对称性对超构表面远场非线性光辐射的共同影响。该非线性光学准晶超构表面运用了基于非线性光学贝里几何相位的金属等离激元结构单元,依据经典的彭罗斯准周期拼接和具有六重对称性的六角准周期拼接形成了不同种类的准晶结构。彭罗斯结构的准周期拼接具有五重对称性,其衍射图案则具有十重对称性,这些都是晶体衍射定理所不允许的对称性。而六角准周期拼接是2017年提出的一种准周期拼接,它具有晶体衍射定理所允许的六重对称性,却并不遵从短程有序的规律。这两种拼接方式可以与某些特定的比例联系起来,这些比例由不同阶次的迭代规则决定:彭罗斯结构对应一阶迭代过程,其比例是人们熟知的“黄金分割比”,而六角准周期晶格对应三阶过程,其比例可称为“黄铜分割比”。自六角准周期晶格从理论上提出以来,本项工作中的非线性光学准晶超构表面是首个利用黄铜分割比实验实现的人工光学结构。 非线性光学准晶超构表面中不同转向的超构单元对入射基频光的响应是均匀的,因此其线性光学衍射仅能反映超构表面的全局对称性,即晶格结构决定其远场光衍射。而在倍频实验中,即出射光的频率是入射光的两倍(如1200nm 变为600nm)。由于打破了超构单元的中心反演对称性并引入了非线性光学几何相位,其非线性光学衍射与晶格结构的局域对称性、全局对称性同时相关。因此,可以通过调控超构单元的指向分布,进而有效地调控倍频光衍射中的零级。非线性光学准晶超构表面这一概念或将为设计超构表面非线性光源、人工微纳光学结构材料提供新的思路。
南方科技大学 2021-04-13
微纳多层聚合物光学膜
聚合物多层光学膜代表着光学膜技术的最高水平,在光电 子相关产业有广泛的应用,国内产品市场完全被美国 3M、日本东丽等跨国公司所垄断。项目拟通过设计一维、二维光子晶体结构,利用光子晶体结构的禁带实现不同能量的光子进行选择性透过,来实现复杂的光谱选择(例如红、蓝光双带通滤波器)和偏振态调控。产品的实现和产业化,可填补国产高端光学膜产品市场空白。 
中国科学技术大学 2021-04-14
首页 上一页 1 2
  • ...
  • 10 11 12
  • ...
  • 45 46 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1