高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种船舶双曲率外板空间定位标记方法及其标记装置
本发明公开了一种船舶双曲率外板空间定位标记方法及其标记装置,其方法包括以下步骤:1)在计算机上建立船舶的坐标原点信息;2)将爬行智能车的理论爬行路径以及船舶双曲率外板上需要标记的点的空间坐标输入给爬行智能车;3)爬行智能车吸附在船舶双曲率外板上并在船舶双曲率外板上爬行并做出修正;4)爬行智能车在船舶双曲率外板上做出标记。其装置包括计算机、空间定位装置、爬行智能车、安装在爬行智能车上的吸附机构、标记机构。本发明实现了爬行智能车在复杂双曲率外板上的吸附、爬行、标记功能,依托空间定位技术,实时监控爬行智能
华中科技大学 2021-04-14
糖代谢标记中的副反应
在利用叠氮非天然糖 Ac4ManNAz 对细胞进行唾液酸化标记时,质谱数据中出现了胞质蛋白。而正常情况下,胞质蛋白是不具有唾液酸修饰的。为了解释这一现象,利用基于位点的化学蛋白质学技术手段鉴定到这些蛋白中的半胱氨酸残基被非天然糖所修饰,并且产生了带有不同乙酰基数目的修饰情况。为了进一步排除这些修饰是通过代谢途径产生的可能性,将全乙酰化的非天然糖直接与细胞裂解液或纯蛋白孵育,也都能发现蛋白质上的半胱氨酸可以被修饰。
北京大学 2021-04-11
活细胞核酸标记的研究
真核细胞具有复杂而高度有序的空间结构,研究生物大分子的亚细胞定位,对于阐明其生物学功能有着重要意义。核酸分子在细胞中的特异性分布直接影响基因表达的效率,在蛋白质翻译调控、学习与记忆形成等一系列生物学过程中扮演了重要角色。针对亚细胞区域中RNA组份的研究,传统手段依赖于化学交联、免疫沉淀、离心分离等技术,不但需要预先破坏细胞的天然结构,而且还局限于少数能够被机械分离的亚细胞区域,缺乏普适性。 本研究提出“邻近核酸标记”的策略。该策略的核心是在活细胞中利用酶促反应形成大量高活性的自由基,与酶邻近的核酸分子发生共价加成反应,从而实现空间特异性标记。从工程改造的过氧化物酶APEX2出发,邹鹏课题组首先设计并合成了十余种与生物素偶联的酶底物,并从中发现生物素-苯胺探针的核酸标记活性最高。他们进一步以线粒体、核纤层和核仁等亚细胞结构为例,建立了在活细胞中开展邻近核酸标记的方法,并通过定量PCR与高通量测序分析证实了标记方法具有良好的空间特异性。邻近核酸标记技术操作简单、具有普适性,为日后研究核酸的亚细胞定位与功能关系提供了必要的工具。
北京大学 2021-04-11
广谱肿瘤分子靶向放射性新药—18F标记黄连素衍生物的开发与转化
临床肿瘤的诊断和分期依赖于影像学,核医学2-氟-2-脱氧-D-葡萄糖(18F-FDG)正电子发射计算机断层扫描/计算机体层扫描(Positron Emission Computed Tomography / Computed Tomography, PET/CT)技术在肿瘤的诊断及分期(寻找恶性肿瘤原发灶及同步探测转移灶),探测未知原发肿瘤的原发灶,探测肿瘤复发、鉴别肿瘤残留与治疗后瘢痕或坏死组织,监测治疗,帮助制定放疗计划等方面较传统的影像学方法如:CT、MIR、超声等均已显示出独特的优越性。然而,18F-FDG不具有肿瘤特异性。炎症、感染性疾病如活动性肺结核、隐球菌性肉芽肿、肺脓肿、结节病等也可出现18F-FDG高摄取,导致假阳性结果;同时,许多分化良好的低级别肿瘤,包括大多数前列腺癌、肾细胞癌、肝癌、肺类癌、支气管肺泡细胞癌、消化道和结肠粘液性肿瘤、低度恶性淋巴瘤、高分化腺癌等,葡萄糖代谢水平相对较低,更接近正常组织,18F-FDG摄取低或不摄取,可出现假阴性结果。上述18F-FDG PET/CT肿瘤显像的假阳性和假阴性结果无疑会给临床肿瘤的诊断及鉴别诊断带来巨大的挑战。因此,开发新型非18F-FDG肿瘤靶向显像诊断药物势在必行! 研究发现,黄连素——一种从小檗科植物家族中提取的苄基四异喹啉类生物碱,通过选择性作用于肿瘤细胞的线粒体,包括抑制线粒体复合物I和与腺嘌呤核苷酸转运蛋白相互作用等,诱导线粒体功能障碍,从而抑制肿瘤细胞的生长。肿瘤细胞的线粒体已成为一种优良的抗肿瘤治疗靶标。黄连素似乎可以抑制多种肿瘤细胞,包括结肠癌、前列腺癌、胶质母细胞瘤、胃癌、表皮样癌、肝癌、胰腺癌、乳腺癌、口腔癌、舌癌、白血病和黑色素瘤等多种肿瘤细胞的生长。利用黄连素对肿瘤细胞线粒体的高度靶向性特性,用放射性释放γ射线的放射性核素标记黄连素衍生物可完成活体肿瘤的靶向分子显像;用释放α离子或β等射线的治疗用放射性核素标记该黄连素衍生物,利用黄连素衍生物自身的抗癌活性和放射性核素释放射线的辐射损伤生物学效应,可实现对肿瘤的化学-放射双重治疗。 首次成功合成新的黄连素衍生物并完成18F标记,形成一种新分子——18F标记黄连素衍生物;运用PET/CT技术,初步实现了18F标记黄连素衍生物(新分子)的新用途——活体荷VX2瘤兔的肿瘤靶向分子显像,具有创新性。 查新报告显示:国内外均无相关专利及文献报道。
四川大学 2016-04-15
DNA分子杂交技术,分子杂交炉、核酸分子杂交
产品详细介绍 DNA分子杂交技术,分子杂交炉、核酸分子杂交 一、用途特点:     此仪器是我厂与北京大学生物系、复旦大学遗传所等科研单位参照国外最新产品联合研制推出的国内首创产品。TC-4YY型多功能核酸分子杂交仪,本仪器的各项技术指标均达到国外同类产品水平。可替代进口杂交仪,本仪器采用独特的滚动式反应架装置,配套特制密封杂交管在水平轴上旋转,使杂交管内壁上的杂交反应膜各处能均匀地杂交液反复地接触,充分反应。可进行生物大分子DNA、RNA及蛋白质杂交反应。不仅比塑料袋或其它容器在水浴中进行分子杂交反应效果好,并且还能减少杂交液体积,提高杂交效率,而且也避免了加放射性同位素后封口或塑料袋破漏而造成同位素污染的危险。因此,本仪器广泛应用于生物大分子的杂交反应或其它长时间振摇的化学、生化及免疫学反应,是开展分子生物学技术不可缺少的仪器。     本仪器采用先进的单片计算机进行控制,人机界面采用点阵式液晶显示器(LCD),直观显示系统的运行状况。温度控制采用数字PID技术,输出采用PWM方式,控制精度高,稳定性好,并设有超温保护装置。仪器采用独特滚动式反应装置,每次可夹6根特制玻璃封管在水平轴旋转,旋转速度为每分钟0~16转/可调。TC-4YY型分子杂交仪除具有TC-3YY型所有功能外,杂交箱内可放入直径42mm长300mm杂交瓶。 托盘摆动速度每分钟5~50次/可调。 二、技术指标: 1.电源电压:AC220V±10%  50Hz  350W 2.使用环境:0℃~+40℃,相对湿度:≤90%RH 3.温控范围:环境温度+5℃~100℃可调 4.温度波动值:±1℃ 5.温度显示精度:0.1℃ 6.温度均匀性:±0.03℃ 7.瓶架转速:0~16转/分可调 8.杂交管规格:Φ42×150mm或Φ42×200mm或Φ42×250mm或Φ42×300mm6只(任选) 9.摇台摆动频率:5~50次/分可调 10.工作室尺寸:330mm×270mm×310mm 仪器报价以公司网站为主 相关链接:http://www.tocan.cn/category.php?id=17    公司地址:上海市翔殷路165号B区211室 邮编:200433  联系电话:021-51863860、13621641125         QQ:572980613 上海领成生物科技有限公司提供专业的产品、专业的售前、售中、售后服务,将使您的工作能够收到事半功倍的效果。欢迎新老顾客来电咨询,领成将为您提供最优质的服务!
上海领成生物科技有限公司 2021-08-23
一种基于InDel分子标记鉴定辣椒雄性不育三系配套杂交种真实性和纯度的方法
本发明提供了一种基于InDel分子标记鉴定辣椒雄性不育三系配套杂交种真实性和纯度的方法。其方法为:将辣椒杂交种和亲本培育至芽苗期,提取DNA,应用核心引物对杂交种和亲本进行筛选,只有共显性标记的引物可以作为该杂交种真实性鉴定的分子标记。若辣椒杂交种和亲本在核心引物库中无法筛选出共显性标记,则结合次级核心引物库中继续筛选,直至筛选出共显性标记。本发明建立的快速、同时鉴定辣椒雄性不育三系配套杂交种真实
青岛农业大学 2021-01-12
一种光控RNA标记新技术
研究开发了 “ 荧光团辅助的 RNA 邻近标记和测序技术 ” ,简称 “CAP-seq” 。   该方法通过可见光激发遗传靶向的光敏蛋白 miniSOG 产生活性氧, 介 导邻近 RNA 分子上的鸟嘌呤与具有生物正交功能把手的氨基探针进行共价交联,既而通过富集纯化与高通量测序检测,实现 miniSOG 定位的亚细胞区域内 转录 组的空间特异性标记与鉴定。 利用 CAP-seq ,他们系统研究了几个亚细胞区域的转录组,包括线粒体基质转录组 、 内质网表面 转录组 以及 线粒体外膜附近转录组。这些研究结果表明 CAP-seq 对 活细胞中开放区域的 RNA 标记具有良好的空间特异性和覆盖度 。 他们在线粒体外膜附近检测到 30 个编码氧化磷酸化途径相关蛋白的 RNA 和多达 55 个编码核糖体蛋白的 mRNA ,这一结果不仅支持了线粒体蛋白在线粒体外膜被翻译后直接转运进线粒体的模型,还暗示着线粒体功能可能与蛋白质的翻译调节有关。 CAP-seq 具有操作简单、空间选择性高、生物相容性好的特点,将成为一项适合于在多种生物系统中研究亚细胞 转录组 的新技术。
北京大学 2021-04-11
一种细胞囊泡快速标记装置
本实用新型公开了一种细胞囊泡快速标记装置,该装置包括荧光显微镜、显微镜专用活细胞培养系统、玻璃微电极、压力控制器、电刺激器和气瓶,该方法是采用一种用于膜片钳实验的玻璃微电极,通过一定频率和压力的气体,将微电极中的囊泡标记染料均匀地释放到细胞周围,形成稳定的染料浓度,从而实现对特定的囊泡进行标记。完成标记后,停止给气,染料浓度会因扩散作用迅速降低,无需洗脱过程,可以直接进行囊泡动态变化的后续观察。该方法可快速有效地实现标记并实时记录,从而极大地提高实验效率。
浙江大学 2021-04-13
实时多人无标记三维运动捕捉技术
动作捕捉技术(motion capture)在影视、体育、安防等领域具有广泛应用。传统的动作捕捉分为两大类,光学动捕系统通过在采集环境部署多个红外摄像头,再在人员的动捕服上放置光学标记球来求解出采集者的姿态信息,从而实现对人体运动的捕捉与动画映射;惯性动捕系统通过惯性测量单元(IMU)来采集肢体的运动信息,采集设备相对更轻便,但采集精度不如光学动捕系统。光学动捕系统包括Motion Analysis,Vicon,Optitrack等,惯性动捕系统有Xsens,诺亦腾等。 然而,无论是光学动捕还是惯性动捕都需要动作人穿上特定的设备,不可避免地会影响到人体运动的真实性和动捕的使用范围。同时,相应的专业动捕设备往往价格不菲,很多有需求的小型工作室也会望而却步。因此,学术界和工业界都在极力研究“无标记运动捕捉”技术,即不需要任何穿戴设备,仅由相机观测和算法分析,就实现对多人体运动的实时准确捕捉。这种技术有着更加广泛的应用场景,例如无人售货超市、VR/AR游戏、远程全息通讯、数字人创建、虚拟主播、人机交互、全天候医疗监护等。 近几年,随着深度学习技术的广泛普及,无标记动捕领域也诞生了许多革命性技术,例如实时2D多人体关键点检测技术OpenPose等。然而,多目标实时3D运动捕捉仍然是一个极具挑战性的问题,主要挑战因素包括:如何实现实时计算,如何进行高效的多视角关联,如何解决紧密交互带来的观测失真等。举个例子,当两个人拥抱在一起的时候,当前大多数检测或重建算法都会失效。而理论上,多视角的观测信号能够在一定算法设计下互相补充,尽可能解决单视角运动重建的歧义性。如何充分利用多视角的视频信号,实现复杂、紧密交互场景下的多人体运动捕捉是当前无标记运动捕捉领域的核心问题之一。 该项目研究工作提出的多视角人体运动捕捉系统包括相机采集模块,2D姿态检测模块,4D关联图求解模块,三维骨架求解模块及渲染模块。其主要算法贡献在于提出并实现了4D Association算法。 当前的多视角运动捕捉系统大多采用的是序贯地匹配策略,首先对每个视角进行独立的人体检测和连接(例如,OpenPose检测关键点和关键点相互连接的概率,从而对人体进行连接;Mask-RCNN、AlphaPose和HRNet都需要先检测每个人的BoundingBox,然后对每个人进行独立的人体检测),然后对人体进行多视角关联和姿态求解,最后进行时域跟踪。这种常规方法的缺陷在于,当单个视角检测失败以后,后续的算法难以对失败的检测结果进行修正,从而将错误的检测传递到下一个步骤,影响跟踪效果,对于紧密交互(例如前文提到的两人拥抱)的情形,单视角的往往很难给出令人满意的检测结果,因此基于序贯式的算法一般会失效。 相较而言,该研究工作的创新性在于充分利用单图连接(2D)、多视角连接(1D)、和时域连接(1D)之间的相互约束从而进行全局优化,用多视角信息和时域信息来避免单视角连接的歧义性,同时也通过单视角连接结果来优化多视角的匹配,从而使得关联结果更趋向于全局最优。具体地,该研究工作提出了一种4D Graph的图结构,将上一帧的三维人体关键点(在初始帧或者人进入动捕范围的时候可以缺失,不影响算法的运行)和当前每一视角的2D关键点建模在同一个图结构中,用单图连接、多视角连接、时域连接的概率作为边的权值,将人体多视角关联的问题看成提取有效边的过程。为了快速地求解这个问题,进一步提出了一种基于完全子图的近似求解算法,高效地完成了从4D图结构中提出正确的人体连接。 最终,该研究工作实现了紧密交互下人体的三维姿态重建,并展示了实时系统效果。其算法在多个数据集上均表现出了良好的视觉效果,在Shelf数据集上也取得了当前最好的数值结果。
清华大学 2021-02-01
实时多人无标记三维运动捕捉技术
项目成果/简介:动作捕捉技术(motion capture)在影视、体育、安防等领域具有广泛应用。传统的动作捕捉分为两大类,光学动捕系统通过在采集环境部署多个红外摄像头,再在人员的动捕服上放置光学标记球来求解出采集者的姿态信息,从而实现对人体运动的捕捉与动画映射;惯性动捕系统通过惯性测量单元(IMU)来采集肢体的运动信息,采集设备相对更轻便,但采集精度不如光学动捕系统。光学动捕系统包括Motion An
清华大学 2021-01-12
首页 上一页 1 2 3 4 5 6
  • ...
  • 44 45 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1