高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种受阻酚/受阻胺分子内复合型抗氧剂的合成方法
本发明提供了一种受阻酚/受阻胺分子内复合型抗氧剂的合成方法,包括以下步骤:将化合物I溶解在溶剂A中,加入二氯亚砜,进行取代反应,反应结束后,减压蒸馏除去溶剂A和未反应的二氯亚砜,得到化合物II;使用溶剂B分别溶解化合物II、化合物III,混合,进行酰胺化反应,然后加入缚酸剂,继续反应,待反应结束后过滤,洗涤,真空干燥,得到受阻酚/受阻胺分子内复合型抗氧剂。本发明反应原料易得,方法简便,收率高,产物分子内含有受阻酚抗氧化基团和受阻胺光稳定剂官能团,提高了聚合物的抗氧化性。
浙江大学 2021-04-13
一种以天然高分子为主要成分的环保絮凝剂
本发明涉及一种以天然高分子为主要成分的环保絮凝剂,属于水处理絮凝剂技术领域。絮凝剂组分及各组分的重量份数如下:壳聚糖-木质素或壳聚糖-黄腐酸接枝共聚物60~75份,羧甲基淀粉15~30份,蒙脱土5份,活性炭5份。该絮凝剂主要由天然高分子制得,具有环保不产生二次污染的特点,而且价格低廉,对重金属离子和有机污染物去除率高,絮凝沉降速度快。社会效益:环保,无污染经济效益:在高端水处理行业中成本更低
青岛大学 2021-04-13
人才需求:化学工艺、化学合成、高分子等相关专业、领域人才
化学工艺、化学合成、高分子等相关专业、领域人才
山东世纪阳光科技有限公司 2021-09-08
人才需求:高分子材料专业,本科及以上学历,5名
高分子材料专业,本科及以上学历,5名
山东如悦医疗科技有限公司 2021-08-30
一种通过scout ESI和CNN解码EEG运动想象四分类任务的新方法
导读东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法,以对运动想象(MI)任务进行分类。ESI技术采用边界元法(BEM)和加权最小范数估计(WMNE)分别解决EEG的正向和逆向问题。然后在运动皮层中创建十个scout来选择感兴趣的区域(ROI)。研究者使用Morlet小波方法从scout的时间序列中提取特征。最后,使用CNN对MI任务进行分类。实验结果:在Physionet数据库上的整体平均准确率达到94.5%,分别对左拳头、右拳头、双拳和双脚的单个准确率达到95.3%、93.3%、93.6%、96%,采用十倍交叉验证进行验证。研究人员表示,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者为验证方法的有效性,加入了4个新的受试者进行验证,发现总体平均准确率为92.5%。此外,全局分类器适应单一对象,整体平均准确率提高到94.54%。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。系统框架图1 系统框架图系统框架如图1所示。原始数据来自国际10-10系统的64个电极(不包括Nz、F9、F10、FT9、FT10、A1、A2、TP9、TP10、P9和P10电极),并以每秒160个样本的速度采集。根据国际10-10系统从64个通道采集原始脑电图,并使用BCI2000系统进行记录。记录的数据被分为四个独立MI任务包括左拳MI,右拳MI,双拳MI和双脚MI。首先,由于ERD在执行运动想象时在alpha和beta中不同,因此使用FIR滤波器对EEG进行了8 Hz至30 Hz的带通滤波。然后,通过计算包含正问题和逆问题的源,将传感器空间的活动转化为源空间的活动。接下来,创建scout并提取特征。研究者在运动皮层中创建了10个scout,因为我们只关心与运动相关的活动。十个scout中的每一个都代表了可用源空间中的一个感兴趣的区域(ROI),并且是定义在皮层表面或头部体积上的偶极子的子集。左脑的scout称为L1、L2、L3、L4、L5,右脑的scout称为R1、R2、R3、R4、R5。利用JTFA从10个scout的源时间序列中提取特征。最后,利用CNN对时频图进行分离并进行分类。实验在实验中,研究人员仅使用了随机选择的十个受试者的MI trail (S5,S6,S7,S8,S9,S10,S11,S12,S13,S14)。这里用于分析的数据集包含每个受试者84次试验,每一类包含21次试验。在记录64通道脑电图时,受试者执行了不同的运动想象任务。每个受试者针对以下四个任务中的每一个执行了3轮21试验:当目标出现在屏幕左侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕的右侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕顶部时,受试者想象打开和合上双手的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕底部时,目标会想象双脚张开和合拢,直到目标消失。然后受试者放松。为了统一数据维数,研究者选择了4s的数据,因为每次想象任务的执行时间都在4s左右。此外,脑电图任务是分开的,研究人员在实验中将左拳,右拳,双拳和双脚MI任务分别称为T1,T2,T3和T4。图2 scout命名左右运动想象的scout分别命名为L1、L2、L3、L4、L5、R1、R2、R3、R4、R5,如图2所示。10个scout每一个都被扩展到40个顶点,每个顶点只有一个源。L1区域对应40个信号,其他scout也一样。在计算了来源后,研究者在运动皮层中创建了十个scout,如图3所示。图3 创建10个scout使用ESI计算十个受试者(S5、S6、S7、S8、S9、S10、S11、S12、S13、S14)每次试验的四个任务(T1、T2、T3、T4)的源。对于这四项任务中的每一项,每个受试者每次都要进行7次测试(#1,#2,#3,#4,#5,#6,#7)。展示了第一个步的10个被试的10个scout的4项任务的来源。然后提取10个scout的时间序列进行进一步分析。特征提取在计算源之后,研究人员在运动皮层中创建了包含40个源的10个scout,并提取了scout的时间序列。如图4所示为提取R5 scout时间序列作为示例。图的右边显示了R5 scout的时间序列。本文利用小波变换从scout时间序列中提取特征。图4 提取R5 scout时间序列作为示例在这项研究中,研究者提出利用CNN来解决运动想象任务分类的问题。该模型基于Schirrmeister等提出的Deep ConvNet架构,该网络模型由一个六层卷积网络组成,其中两个最大池层和三个全连接层,如图5所示。图5对于Physionet数据库,研究者首先采用Deep ConvNet架构,包括四个卷积层、四个最大池层和一个全连接层。在实验中,研究者依据经验使用两个最大池化层。并尝试了不同数量的卷积层和完全连接层。时频图利用Morlet小波方法得到了scout的特征。对于每个任务,R5 scout的时频图如图6所示。包含时间和频率互补的时频分析方法提供了时域和频域的联合分布信息,清晰地描述了信号频率与时间的关系。图6 R5 scout的时频图显然,只有部分时频映射是红色的,表明每个任务只对特定的频率和时间敏感。由于图的数量比较大,研究者使用CNN来选择和学习这些图中最基本的特征。研究人员随机选择了几个样本,并将一些特征图可视化,作为MI任务的学习表示,如图7所示。图7为了获得有效的结果,将数据集分为90%作为训练集,其余10%作为测试集。首先,将十个受试者的数据集(总共19320个样本)分为17388个样本以训练所提出的CNN模型,以及1932个样本以验证模型的有效性。在实验中,研究者还选择了另外四个受试者的数据集以增加数据集的规模(27048个样本),其中24343个样本是训练集,其他样本是测试集。在选定的scout上对所提出的CNN架构进行了十次训练和测试,以验证所提出模型的鲁棒性。图8(a)显示了10个scout中每个的全局平均精度。图8 统计结果R5的全局平均精度最高,达到94.5%,而L2的全局平均精度最低,为91.3%。对应L1、L3、L4、L5、R1、R2、R3、R4的整体准确率分别为92.4%、92.5%、93.6%、91.9%、93.0%、91.8%、92.1%、92.6%。所有scout的总体精度均在91%以上,标准差均在0.20%以下。图8(b)显示了十个scout中每个scout四个MI任务的组级统计结果及其标准差。一般来说,R5表现的要比其他的好,而L2在迭代2000中表现最差。标准差较小,说明这些精度更接近平均值且稳定。图9 统计结果图9(a)显示了带有标准差的混淆矩阵,说明了group level分类结果。T1、T2、T3和T4的全局平均精度峰值分别为95.3%、93.3%、93.6%和96.0%。R5 scout的四个MI任务中的每一个都如图9(b)所示。通过改变训练集和测试集顺序的10次试验,确定了scoutR5的性能,结果如图10(a)和(b)所示。在10次试验中,scout R5的T1、T2、T3、T4的平均准确率分别为93.3%、93.8%、94.2%、94.1%。换句话说,四个任务中每一个的平均准确率都超过了93%。全局平均准确率为93.7%。10次试验结果表明,该方法对scout R5的分类效果较好。从以上结果可以清楚地看出,R5 scout在四种MI任务的分类中扮演着最重要的角色。因此,选择R5对四个MI任务进行分类。图 10图11. (a)是不同模型的全局平均准确性的比较。可以发现,该研究提出的模型可以达到最大的精度。从图11. (b)不同模型的ROC曲线可以看出提出的模型比其他模型表现更好。©不同模型T1上的精度比较。(d)不同模型T2的精度比较。(e)不同模型T3的精度比较。(f)不同型号T4的精度比较。图11 不同模型的精度比较结论东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法。该方法可以对运动想象(MI)任务进行分类。实验结果表明,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者加入了4个新的受试者进行验证来验证方法的有效性。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。论文信息:A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN
东北电力大学 2021-04-10
东南大学熊仁根教授团队在分子铁电科学领域取得新进展
东南大学化学化工学院熊仁根教授团队首次提出并利用全氟取代策略成功设计合成了二维杂化钙钛矿铁电体(全氟苄胺)2PbBr4。相关成果以“Two-Dimensional Hybrid Perovskite Ferroelectric Induced by Perfluorinated Substitution”为题在线发表在化学领域国际顶级期刊Journal of the American Chemical Society(《美国化学会会志》)上。东南大学为唯一通讯单位和完成单位,化学化工学院博士生张含悦为论文第一作者。这是在“东南大学十大科学与技术问题”启动培育基金的持续资助下,以及东南大学化学化工学院江苏省“分子铁电科学与应用”重点实验室研究团队所建立的“铁电化学”学科基础上,熊仁根教授团队取得的又一重大阶段性进展。 此前,团队通过单氟取代和双氟取代策略成功设计了多种性能优异的分子铁电体,并伴有许多有趣的物理现象如涡旋畴、窄带隙、热致变色、铁电光伏效应等。然而,对于具有苯环的刚性结构而言,此前的氟取代策略并不令人满意。在先前报道中,以(苄胺)2PbCl4为母体在苯环上不同位置实施单氟取代策略得到的结果中,只有(2-氟苄胺)2PbCl4具有铁电性,而(3-氟苄胺)2PbCl4和(4-氟苄胺)2PbCl4则不是铁电体(J. Am. Chem. Soc. 2019, 141, 18334-18340)。在苯环上,单氟取代作用具有位置选择的局限性,即在正确的结构位置有选择地引入氟离子才有可能诱导铁电性,这存在着极大的随机性和偶然性。在此工作中,铁电体(2-氟苄胺)2PbBr4以及非铁电体(3-氟苄胺)2PbBr4(中心对称结构)和(4-氟苄胺)2PbBr4(中心对称结构)再次验证了单氟取代策略在刚性芳环结构上的局限性和不确定性。探究有效通用的方法实现分子铁电体的精确设计仍然是一个巨大的挑战。
东南大学 2021-02-01
北京蓝晶微生物基于微生物的分子和材料创新平台
蓝晶微生物致力于打造基于微生物的分子和材料创新平台。团队由清华、北大青年科学家组成,顾问团队包括中科院院士,中科院微生物所工业微生物研究室主任等。致力于利用合成生物学技术,提供生物活性分子。业务包括合同付费业务(iGEM科学教育,Holog平台),大客户定制开发(PHA业务线等)及自产经营(CBD开发)。点击上方按钮联系科转云平台进行沟通对接!
清华大学 2021-04-10
解吸池及分子印迹搅拌棒微萃取-高效液相色谱在线联用装置
本技术成果研发了一种微波辅助提取-高速逆流色谱联用方法及其装置。首先采用微波辅助提取模式 本技术成果研发了一种适于装载分子印迹搅拌棒的解吸池,包括一上部池体及一下部池体。上部池体 提取物料;然后提取液浓缩预分离;最后通过高速逆流色谱纯化制备得到目标组分或分析天然产物提取液 的底部连接于下部池体的顶部且两者内部形成一上下贯通的解吸腔,上部池体顶部设有一液流出口,下部 中的目标组分;上述步骤通过接口及转换控制实现微波辅助提取、分离、纯化、高速逆流色谱制备或分析 池体下部圆周对称地均布有三个液流入口,液流出口及液流入口与所述解吸腔连通;还包括一分子印迹搅 于一体,可直接从天然产物中提取得到毫克级高纯度对照品,具有快速高效、高选择性的特点,实现天然 拌棒,放置于所述解吸腔中;还包括一密封圈,密封所述上部池体及下部池体的连接部。上述解吸池配以 产物快速高效的在线提取分离、纯化制备或分析。“天然物质提取分离纯化的实验室制备微波装置”集微 微量注射泵可实现对分子印迹搅拌棒的高效流动加热解吸。另外在该解吸池的基础上,通过与高效液相色 波辅助提取快速高效分离的优势和高速逆流色谱高效纯化、制备
中山大学 2021-04-10
天然高分子(壳聚糖、透明质酸和寡糖)的改性及加工技术
以天然高分子壳聚糖、透明质酸等为原料对其进行改性使其溶解在水、油(普通有机溶剂)等类衍生物,扩大了其作为生物医用材料的应用。然后还以新的生物材料制备方法光聚合方法、电纺丝方法、超临界聚合等方法对改性后的衍生物进行加工,使得其可以应用在生物医用材料如皮肤烧伤敷料、药物控释、人工组织工程支架等生物材料领域。并且还开展了光固化超硬、超耐磨、自清洁材料,光聚合药物缓释材料,光聚合有机高分子纳米微颗粒,光聚合信息存储材料等项目的研究。 溶解性:可溶解水、乙醇等12种有机溶剂;聚合速率,可光聚合壳聚糖单体最大转化率92%,聚合速率12秒;制备材料为无毒。用于食品包装等,生物医药,生物医用材料等,开发前景使用性能优良,具有广阔的市场前景。以壳聚糖等为主要原材料,主要设备是常温反应釜。若生产规模为100吨/年,设备投资约10万元,厂房面积需300m2,动力100KW,操作人员约3人。产品综合成本约80000~120000元/吨,市场平均售价约355000~460000元/吨,年利润约400~600万元,具有一定的经济效益。
北京化工大学 2021-02-01
复旦大学王红艳/公晓红团队揭示自闭症核心症状的分子机制
复旦大学附属妇产科医院王红艳教授团队/生命科学学院公晓红副教授研究通过遗传改造的小鼠模型解析病源性突变的致病效应,揭示了孤独症核心症状的分子机制。
复旦大学 2022-04-12
首页 上一页 1 2
  • ...
  • 54 55 56
  • ...
  • 65 66 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1