高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于体感和视觉双平衡防晕动系统
本项目深入分析了日常生活中晕车晕船等晕动病的发病原因,开创性地从体感和视觉两个方面对晕动病进行预防和缓解。通过设计一种基于自动控制技术和图像处理技术的嵌入式防晕动平衡系统,以Intel Galileo和Bay Trail平台为核心,同时控制三自由度平台的平衡和稳定摄像头采集的图像,实现了体感和视觉的双平衡,从而屏蔽了外界倾斜和晃动对乘客的影响。在一定程度上避免了晕动病的发生,更为乘客带来了娱乐舒适、丰富多彩的旅行体验。
西安电子科技大学 2021-04-14
基于软件无线电的反无人机系统
本项目主要针对“轻、慢、小”型无人机,研发便携式轻小型反无人机防御系统,该系统包含定位跟踪雷达、定向干扰/诱捕模块、电源等。可以实现对小型无人机的准确定位和跟踪,做到先发现,先行动,为进一步对无人机目标的诱捕、摧毁或者有效干扰降低其准确性提供可靠的位置信息。同时也可以实现对隐身无人机目标的发现跟踪,并对其进行诱捕、摧毁或者有效干扰等反制行动。
西安电子科技大学 2021-04-14
一种固态盘自适应纠错方法与系统
本发明公开了一种固态盘内部自适应 LDPC 纠错方法,包括(1) 初始化:固态盘在输入数据前,进行块擦除操作,并初始化所有擦除 块的纠错码标识符;(2)固态盘自适应纠错编码:对写入的原始数据进 行编码生成码字;(3)固态盘译码过程,包括:(3.1)判断是否有读操作, 如果有读操作则转向(3.2),否则结束;(3.2)判断读取页所在块 i 的纠错 码标识符 Bi 是否为 0;(3.3)如果 Bi 为 0,则块 i 内所
华中科技大学 2021-04-14
一种流场实时精确测量系统及方法
本发明提供一种流场实时精确测量系统及方法。系统,包括示 踪粒子发生器、图像处理子系统和 PIV 测量子系统,示踪粒子发生器设置在待测流场上游,图像处理子系统采集流场中示踪粒子图像,传 递给 PIV 测量子系统。方法,根据前一次测量,计算空间分辨率调整 信息和时间分辨率调整信息,调整查询窗口参数和图像采集速度,在 后一次测量时,根据调整后的图像采集速度采集流场粒子图像,对该 幅图像和上幅图像,采用调整后的查询窗口参数,通过粒子图像测速 方法获得当前全流场速度矢量。本发明提供的流场实时精确测量系统 及方
华中科技大学 2021-04-14
一种面向 SMD 的可扩展智能仓储系统
本发明公开了一种面向 SMD 的可扩展智能仓储系统,包括存料 架组件、料盒组件、机械手组件、输送带组件以及检测区组件等,其 中料盒组件包括一系列依序排列的料盒,并通过转动链组件安装在所 述存料架组件上实现循环输送,各个料盒的前门和后门分别通过弹簧 铰链在非存取料状态下保持封闭,并且为前门还配备有防止其开启的 C 型锁销;机械手组件包括触开杆、取料机械手和存料机械手,并通 过对料盘前后门以及 C 型锁销的作用来实现存取料操作。通过本发明, 能够以结构紧凑、便于操控的方式实现对现有 SMD 仓库中多料盘
华中科技大学 2021-04-14
一种数控机床加工性能监控系统
本发明提出一种数控机床加工性能监控系统,由管理服务器通过工业以太网将多台机床上的监控装置连接起来,监控装置接收机床自身状态数据,采集主轴电机和进给电机的电流以及主轴的振动量,对采集的数据进行处理,将处理结果与机床加工性能判断基准比较,根据设定的控制策略发出控制指令对加工过程进行控制,并将所有相关信息反馈给管理服务器,管理服务器分析机床的加工性能状态和发展趋势。本发明对多台机床自身参数和现场加工状态进行监测,分析机床当前加工性能及其发展趋势,并自适应控制复杂的加工过程,有效保证了加工安全和质量。
华中科技大学 2021-04-14
基于 Gabor 特征的人脸素描合成方法及系统
本发明提供了一种基于 GABOR 特征的人脸素描合成方法及系统,包括步骤:将待合成人脸照片、 人脸照片样本以及人脸素描样本划分为相互重叠的像素块;提取各像素块的 Gabor 特征,基于像素块 Gabor特征的协方差矩阵获得Stein散度矩阵;基于Stein散度矩阵及各人脸照片样本像素块的重建系数, 获得最优权值;采用最优权值将各人脸素描样本对应位置的像素块加权合成,获得合成人脸素描像素块; 融合合成人脸素描像素块获得待合成人脸照片对应的合成人脸
武汉大学 2021-04-14
激光雷达系统回波能量动态范围的压缩方法
本发明涉及一种激光雷达系统回波能量动态范围的压缩方法。本发明尤其适用于双轴结构,通过在 发射光轴与接收光轴之间设置一定的负夹角,降低重叠因子随探测距离增加的上升速率,有利于压缩激 光回波能量的动态范围;此外,将探测器设置在接收光学系统焦平面后一定距离处,以获得最佳的激光 回波能量响应。本发明通过理论分析和数值计算给出的经验性公式和结论,对激光雷达系统的整机设计 和性能评估具有指导意义。
武汉大学 2021-04-14
新型电力系统数字动模实验平台UREP
新型电力系统仿真分析、测试验证。 一、项目分类 关键核心技术突破 二、成果简介 随着“双碳目标”国家能源战略的确定和新型电力系统概念的提出,我国能源转型力度持续加大,逐步形成了大量新能源接入电力系统的局面。由于风能、太阳能等新能源与常规能源禀性差别很大,其并网发电系统具有显著不确定性、波动性和机械惯量缺失等特点。此外,高比例电力电子装备、新一代直流输电、多能互补的综合能源、各类大规模储能电站、各种通信及自动化新技术装置等因素使得新型电力系统组成要素愈加复杂,动态特性蕴含诸多未知,造成系统规划设计、装备制造、系统集成和运行控制等都面临史无前例的挑战。目前,电力科研院所、规划设计单位、装备制造厂家、教育培训机构等对新型电力系统开展仿真分析、测试验证的需求很大、很迫切。同时看到,新型电力系统的这些新型场景对仿真技术要求苛刻,门槛很高。 1)新型电力系统需要精细化动态模拟。人们对新型电力系统动态行为的认识还不够深入,无论是基础理论层面还是工程技术层面还处于广泛讨论、观点碰撞或局部示范试验阶段。然而,电力设施的新技术路线试错成本极高,不太可能对所有备选方案和技术选项都逐一示范。因此,开展大量深入的仿真研究是推进新型电力系统实施的必要手段。对于新型电力系统,需要深入开展仿真研究的领域包括:①新型电网体系结构研究;②新能源接入电网关键技术; ③ 新能源电网保护与自动化技术; ④源网荷储协同控制与优化调度;⑤新型配电网的电能质量分析与控制;⑥人工智能等新技术对新型电力系统的支撑。 2)新能源基地并网需要做稳定性评估。大规模陆上及海上风电集中接入局部电网有可能引发次/超同步振荡、宽频谐波谐振等电网安全稳定性问题,需要对这些问题进行机理及应对策略分析。所以需要对包含多类型新能源装备的局部电网做精细化动模仿真测试。然而,百千台级风光机组电磁暂态详细建模与仿真是一个卡脖子难题。 3)软、硬件在环仿真是必要的。新能源及储能电站的电力电子变流器控制及保护策略是厂家核心机密,对外不公开。由于控保策略对装置外特性及其接入系统的响应特性有重要影响,故需要分析内部核心控保策略。需要将新能源及储能控制器实物或黑盒模型接入测试平台开展动模仿真,以对其多时间尺度动态响应特性进行精细化分析。软、硬件在环试验对仿真平台提出了更高要求。 4)超大规模储能电站的仿真难度大。①单个储能机组的设备形态发生改变,从两/三电平变流器向模块化多电平变流器(MMC)的复杂结构演变,甚至采用储能跟变流器集成,故需要对这种复杂新形态做精细化测试验证。②超大规模、超大机组的储能电站包含较多并联储能单元或者储能机组,吉瓦时级储能电站,需上百台机组并联。另外,储能变流器的控制策略正从电流源型向电压源型转变,控制策略趋于复杂化,故需要大量的储能变流器的控制装置接入测试平台,才能对实现对储能单机以及多机之间协调控制性能测试,进而实现超大规模、超大机组的储能电站的精细化仿真。 5)现代直流输电控制与保护测试提出更高要求。超/特高压直流输电系统应用于新能源基地外送的控制保护策略及其硬件在环试验对实时仿真平台硬件资源要求苛刻,既要对直流输电系统建模,又要对新能源基地建模,应用场景的复杂性对仿真平台要求更高。 1 技术分析(创新性、先进性、独占性) 1.1 国产化实时仿真技术现状 实时仿真是指仿真模型执行进度与系统时钟完全同步的一类仿真,具备这种特性的仿真装置称为实时仿真器。新型电力系统的认知、试验、生产、培训需求快速增长,形成了实时仿真领域巨大潜在市场。但目前RTDS、RT-LAB等进口设备依旧垄断市场,对于大规模新能源场站、县域规模万节点级电力系统、多端特高压直流输电等应用场景电磁暂态仿真,所需的仿真资源巨大,平台造价极高。且关键核心技术处于卡脖子状态,平台应用的灵活性和开放性受到很大限制。只有开发和推广国产化实时仿真技术才能为顺利推进新型电力系统建设过程中的研究和生产提供自主可控的工具和手段。 1.2 UREP与进口设备的对比试验  为了实现电力实时仿真器的国产化替代,彻底解决电力实时仿真领域的技术“卡脖子”问题,国产实时仿真器UREP需要与国际主流技术进行对比,力求达到甚至超过目前世界最先进的技术。对标对象为行业公认的电力系统实时仿真仪(RTDS)和行业广泛使用的RTLAB,以上两款设备均为加拿大生产。对比试验方案如图1-1所示。制定标准(典型)测试算例,分别在UREP、RTDS和RTLAB环境下搭建测试算例的仿真模型,在完全相同的测试条件和试验内容下得到各种仿真器的仿真结果,比较仿真结果的一致性。同时比对仿真规模、建模效率和编译时间等关键指标。             图1-1  国产UREP与进口设备对标方案 1.2.1电气网络仿真对比    图1-2表示了一个多支路网络,基于图1-1中三种仿真器搭建该模型,通过不断增加支路数扩大网络规模,直到仿真器过载,得到仿真器的算力极限。         图1-2  多支路电气网络 在50us仿真步长下,对于图1-2案例RTLAB最大仿真规模为78个 三相节点,UREP也为78个 三相节点,二者相同。在编译速度方面,RTLAB编译时间为3分52秒,UREP编译时间为1分12秒,UREP是RTLAB的3.22倍。      图1-3  基于RTDS的仿真模型  当基于RTDS建模时,如图2-5,每块PB5最多允许24个节点;当基于NovaCor建模时,在超大步长150us下可以达到100节点,在50us步长下仿真规模未知。 2.2.2 双馈风机仿真对比   双馈风机含有电机、传动链、电力电子变流器和控制系统,是具有代表性的新能源元件。在在50us仿真步长下,对于如图1-4案例,RTLAB最大仿真规模为6台,UREP也为6台,二者相同。在编译速度方面,RTLAB编译时间为7分0秒,UREP编译时间为2分12秒,UREP是RTLAB的3.18倍。                图1-4  双馈风机测试案例 2.2.3 直流输电仿真对比   直流输电是最复杂的电力电子装备,有换流阀、阀控制器、极控制器、站控制器等一次和二次系统,是实时仿真领域的难点,也是检验仿真器能力的试金石。图1-5是双端单极直流输电系统测试用例,每端包含2个六脉波桥,控制保护包括了阀控、极控和主控模型,封装于蓝色模块内。   图1-5 双端单极直流输电系统测试用例 将图1-5所示算例分别在RTLAB和UREP中建模运行,在单核可用资源下,若仿真对象为电气主系统和控制保护组成的整个系统,则RTLAB过载,UREP也过载。若仿真对象仅为电气主系统(即双侧电源、交直流滤波器和4个6脉波桥),则RTLAB和UREP均不过载。在编译速度方面,RTLAB编译时间为3分40秒,UREP编译时间为1分11秒,UREP是RTLAB的3.10倍。 2.2.4 同步发电机组仿真对比    同步发电机目前仍是电力系统主力电源,是电力系统的主要仿真对象。同步发电机组模型包括同步发电机、调速器、励磁调节器及升压变。搭建多台同步电机并列运行算例,如图1-6所示。   图1-6  同步电机并列运行算例 在50us仿真步长下,对于图1-6案例RTLAB最大仿真规模为11台,UREP为13台。在编译速度方面,RTLAB编译时间为3分51秒,UREP编译时间为1分16秒,UREP是RTLAB的3.04倍。 2.2.5 最小步长对比 基于CPU的最小仿真步长能够体现仿真计算时间的抖动问题,抖动越小,允许的仿真步长就越小。因此,通过比较最小仿真步长,也可以反映仿真器的计算性能。仿真对象采用单台双馈风机,模型包括风力机、绕线异步电机、机侧变流器、网侧变流器、主动系统、所接入的配电网等元素,如图1-7所示。             图1-7  测试最小步长算例 经测试,RTLAB最小仿真步长为24us,UREP最小仿真步长为20us。可见,UREP具有更小的仿真抖动。 2.2.6 仿真精度对比 为了验证国产UREP的仿真精度,采取和RTDS交叉对比验证方法说明UREP的仿真精度。电力系统仿真包括电磁暂态和机电暂态,因此,从电磁暂态和机电暂态两个方面进行对比,同时考虑各种应用场景,以覆盖各种情形。电磁暂态检测案例的电网拓扑如图1-8所示。 图1-8 电磁暂态检测使用案例 无穷大电源电压等级为110kV,频率为50Hz,系统内阻抗为;L1、L3线路阻抗为,L2、L4线路阻抗为, T1、T2两变压器的额定容量均为,短路电压,空载损耗,空载电流,短路损耗,变比,高低压绕组均为Y形联结;假设系统A1、B1、A、B处供电负荷为(5+j1)MVA,C1和C处供电负荷为1+j0.1MVA。UREP建模如图1-9所示。   图1-9 电磁暂态检测案例的UREP仿真模型 基于RTDS建立电磁暂态案例的仿真模型如图1-10所示,其电压过零点短路控制如图1-10所示。   图1-10  RTDS仿真模型   图1-11  RTDS电压过零点短路控制结构 对上述模型,分别使用UREP和RTDS进行实时仿真,仿真时间为0.2s,短路故障发生在0.06s-0.16s之间,仿真步长为100微秒,横轴表示在0.2s时间内仿真采样点数,纵轴表示母线电压、电流,单位分别为V、A。在母线A点处发生三相短路,短路前后及短路期间的三相电压波形如图16-7。为了显示细微之处,将图1-12局部放大后,如图1-13。   图1-12  A点发生三相短路时三相电压波形   图1-13  A点处发生三相短路时三相电压波形局部放大 点划线为RTDS仿真结果,虚线为UREP仿真结果。可以看出,两种仿真结果高度重合,表现出电磁暂态仿真结果的高度一致。电磁暂态过程除了表现在电压动态还表现在电流动态,短路前后及短路期间的三相短路电流波形如图1-14。   图1-14 A点处发生三相短路时三相电流波形 图1-15  A点处发生三相短路时三相电流波形局部放大图 1.3  对标结论 (1)在内核资源完全等同条件下,国产UREP和RTLAB的仿真算力基本相同,即内核授权数相同条件下,具有相同的仿真规模。 (2)国产UREP的建模效率和编译速度远远高于RTLAB。小规模场景下,UREP是RTLAB的3倍左右,大规模场景下UREP是RTLAB的45倍左右。 (3)在仿真对象完全相同的条件下,国产UREP和RTDS的电磁暂态仿真结果完全相同,二者交叉对比没有差别。
贵州大学 2022-08-15
气/固/液混合多相流流型/流量精准检测系统
本成果基于先进材料技术、微纳制造工艺的电容式微机械超声传感器(CMUT)与压阻式MEMS压力传感器,信号处理智能算法、无线信号传输及微系统集成的多项研究成果,进行了跨尺度多相流浓度与超声衰减及压力分布的物理场耦合谱图像数值模型,优化超声/压力频率、功率及尺度等多参数设计,构建了阵列式多频谱超声-压力融合RMF瞬态浓度计算方法,实现多维、多参数RMF流型辨识与流量在线监测能力,设计RMF浓度超声-压力融合检测微系统,形成了“气固两相粉尘扩散浓度”“气液两相冷凝剂加注质量”在线监测解决方案。 一、项目分类 关键核心技术突破 二、技术分析 气/固/液多相流混合现象广泛存在于工业生产中,北京理工大学娄文忠教授团队针对当前工业粉尘爆炸、粉尘防护、新冠疫苗低温贮藏装置的冷凝剂高效安全加注,推进国家“公共安全”“节能减排”重大需求,创新性提出超声-压力复合的气/固/液混合多相流流型/流量精准检测微系统的研制。 基于先进材料技术、微纳制造工艺的电容式微机械超声传感器(CMUT)与压阻式MEMS压力传感器,信号处理智能算法、无线信号传输及微系统集成的多项研究成果,进行了跨尺度多相流浓度与超声衰减及压力分布的物理场耦合谱图像数值模型,优化超声/压力频率、功率及尺度等多参数设计,构建了阵列式多频谱超声-压力融合RMF瞬态浓度计算方法,实现多维、多参数RMF流型辨识与流量在线监测能力,设计RMF浓度超声-压力融合检测微系统,形成了“气固两相粉尘扩散浓度”“气液两相冷凝剂加注质量”在线监测解决方案。 该方案采用了多项先进的专利技术,具有体积小、功耗低、精度高、响应速度快等特点,当前已有相关实验数据支撑,同时结合无线组网技术及物联网技术,具备构建“粉尘爆炸评估系统”“冷凝剂远程监测”条件。
北京理工大学 2022-08-17
首页 上一页 1 2
  • ...
  • 994 995 996
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1