高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
肝癌靶向纳米药物
本项目提供了一种靶向肝癌细胞的纳米药物(LTAG-NPs)。该药 物以天然多糖搭载临床广泛使用的铂类抗癌药物,具有合成简便,成 分友好的特点,通过与肝(癌)细胞发生特异性结合,实现肝癌靶向 效果。药物在肝部高效富集并在肿瘤细胞中释药。因此,LTAG-NPs 在有效抑制肿瘤生长的同时,明显降低传统化疗药物强烈的毒副作用, 提高患者顺从度和安全性。具有较高临床应用价值和转化前景。 体外释药实验表明,在肿瘤细胞环境下,LTAG-NPs 4 小时释放 药物超过 20%,6 天药物全部释放,既在 6 天内缓慢持续释药;药物 代谢实验证明,LTAG-NPs 在注射小鼠体内 24 h 后仍保持较高药物 浓度,具有血液长循环效果;生物分布实验证明,纳米药物在肝部的 富集是传统化疗药物的 5-6 倍,明显降低了在肾脏的积累;对于同时 种有肝异位瘤和肺异位瘤的小鼠,LTAG-NPs 在肝异位瘤的富集量为 肺异位瘤的 2.5 倍,说明具有优异的肝肿瘤靶向能力。体内抑瘤实验 证明,纳米药物具有与传统化疗药物相当的抑瘤效果但毒副作用明显 降低,尤其是明显降低了肾毒性。大剂量注射传统化疗药物的小鼠在 5 天内全部死亡,而纳米药物组则保持存活率 100%,且小鼠体重稳 步上升,体征良好。 以上动物实验全部由医院完成并进行相关评价
南开大学 2021-04-13
Janus 药物共轭体
目前肿瘤化疗仍是大多数癌症患者不可缺少的治疗方法,但是化疗药物往往缺乏选择性,而且肿瘤细胞容易产生多药耐药性,严重影响化疗的效果。因此,研究可逆转肿瘤多药耐药性的功能性药物输送系统在提高化疗药物药效、降低毒副作用等方面将具有广阔的应用前景。纳米药物载体,如脂质体封装的抗癌药物在临床前和临床实验中已被证实能够通过降低毒性和增强疗效来提高治疗指数。然而,传统脂质体存在载药量低(一般<10%)、稳定性差、药物容易泄漏等问题,导致治疗效果不理想,并且容易引发机体的毒副作用。
北京大学 2021-04-11
放射性药物
放射性药物是可用于诊断或治疗目的的药物,由放射性同位素与有机分子键合组成。有机分子将放射性同位素传递至特定的器官、组织或细胞。 ​ 根据特性选择放射性同位素发射穿透伽马射线的放射性同位素用于诊断(成像),发出的辐射脱离身体后被特定仪器(SPECT / PET相机)检测到。通常,用于成像的同位素产生的辐射在1天后通过放射性衰变和正常的身体排泄完全消除。最常见的用于成像的同位素是:99mTc、I123、I131、Tl201、In111和F18。 ​ 发射短程粒子(α或β)的放射性同位素用于治疗,因为它们能够在非常短的距离内失去所有能量,因此产生大量局部伤害(例如细胞破坏)。该特性用于治疗目的:破坏癌细胞,骨癌或关节炎的姑息治疗中减缓疼痛。这类同位素在体内的停留时间比成像同位素更长;用来提高治疗效率,但仍然限制在几天内。最常见的治疗同位素是:I131、Y90、Rh188和Lu177。 ​ 放射性药物的工作原理是:基于使用分子“出租车”,将受控剂量的放射性活度特异性地传递至目标患病组织(通常是癌细胞),以便根据所用放射性核素的类型可视化(诊断)或治愈(治疗)组织。放射性药物通常包含负责将放射性核素引导至目标组织的生物载体(抗体、肽等)。双功能螯合剂牢固地抓住放射性核素并确保与生物载体之间的牢固结合。
北京先通国际医药科技股份有限公司 2022-02-25
抗脑缺血1类化学新药DBZ的开发
完成人简介:郑晓晖,西北大学教授,博士生导师,中草药现代化工程研究中心主任,西北大学深圳清华大学研究院共建"创新中药及天然药物研究"联合实验室主任,陕西省中医药管理局“中药复方效应成分分析”重点研究室主任,陕西新药技术开发中心特聘专家,九三学社中央促进技术创新工作委员会委员,九三学社陕西省委常委,陕西省九三学社教育文化专门委员会主任委员,九三学社西北大学主委,教育部“长江学者和创新团队发展计划”、“陕西省重点科技创新团队”团队带头人,入选国家百千万人才工程,授予“有突出贡献中青年专家”荣誉称号,享受国务院政府特殊津贴。 成果内容:丹参素冰片酯(DBZ)是课题组应用代谢物组学研究技术,采用HPLCMS、GCMS、GCFTIR、NMR等技术手段,在复方丹参方效应成分的基础上,依据传统中医药理论与“君使”对药的化合物设计方法,结合现代药物化学和药理学,设计、合成的一种治疗心脑血管疾病(抗脑缺血)的新药候选化合物。DBZ显著的抗脑缺血损伤活性,并从血管新生、神经炎症、氧化应激等方面深入全面地揭示了其多环节的作用机制,相关文章发表在药学领域国际权威期刊《英国药理学杂志》上。 DBZ具有易于制备、工艺可控、高效低毒等特点,是一个成药能力良好的化合物。现已完成大规模化的非光学活性DBZ生产工艺(20Kg/批),并建立光学活性DBZ拆分工艺,建立光学活性DBZ不对称合成工艺;同时开发出光学活性的右旋 DBZ 10公斤级合成工艺。建立了DBZ原料药质量标准、DBZ脂肪乳剂的工艺。 现已获中国发明专利授权4项, 1项PCT国际专利获58个国家及地区授权。 成果用途: 该项目研究内容及产品涉及治疗一种治疗心脑血管疾病(抗脑缺血)(1类化药)开发。 成果成熟度:中试产品阶段(已解决关键技术,需要合作进行产业化攻关) 转化方式:技术入股、合作推广,本项目欲融资8,000万元占股20%,按照国家 1 类新药的申报要求,展开研发、产业化的规范市场运作和资本运作。 成果知识产权情况 专利号 专利名称 专利状态 ZL 201410175950.8 一种混旋丹参素冰片酯的合成方法 授权 ZL 201310470979.4 一种丹参素冰片酯的工业化合成方法 授权 ZL200910023010.6 取代的苯甲酸衍生物及其合成方法和用途 授权 ZL200610042787.3  β-(3,4-二羟基苯基)-α-羟基丙酸冰片酯、其合成方法和用途 授权 PCT/CN2007/001550 取代β苯基α羟基丙酸衍生物、其合成方法和用途 授权
西北大学 2021-05-11
一类抗肿瘤新药环苯替尼项目
环苯替尼是全新结构新实体化合物,为第三代酪氨酸激酶抑制剂,按新药注册分类属于化学药品1.1。是格列卫 Gleevec(甲磺酸伊马替尼)的me better药物,用于治疗慢性粒细胞白血病(CML)和胃肠道间质瘤(GIST)。环苯替尼是通过骨架跃迁策略发现新结构化合物,机制研究表明为信号网络机制产生药效的新化学实体药物。 环苯替尼的显著特点是对人癌(CML)免疫缺陷性小鼠异体移植体内药效达到治愈的效果,肿瘤细胞完全被杀死,有效率达到100%,无严重毒性发生。 环苯替尼经8步化学合成,获得的全新结构的化合物,经一级检索未见相关报导(上海图书馆上海科学技术情报研究所查新)。目前已获得 2 项中国发明专利申请和1项PCT国际专利申请,该课题的临床前主要试验工作已经完成,包括:环苯替尼合成工艺、结构确证、原料及制剂质量研究和稳定性研究、主要药效学研究和部分安全性研究,已经具备成药性。
辽宁大学 2021-04-11
基于银杏中活性成分开发治疗哮喘的新药
中试阶段/n支气管哮喘是临床常见病多发病,目前治疗哮喘以糖皮质激素为主, 副作用多。古籍记载银杏有敛肺平喘功效,但目前尚无银杏治疗哮喘的 药物上市。在详细研究银杏有效成分基础上,该项目组发现一组新的化 合物具有敛肺平喘作用,并开发了一种从银杏中提取该活性成分的新技 术及生产工艺,进行了中试生产,产品纯度可达 95%以上。经动物药效学 和细胞学试验证明,此活性成分具有预防和治疗哮喘的显著效果。动物 急性毒性、长期毒性实验表明,该活性成分没有毒副作用,具备开发治疗哮喘新物的潜力,可产生显著的社会经济效益
华中科技大学 2021-01-12
抗脑缺血1类化学新药DBZ的开发
项目成果/简介:完成人简介:郑晓晖,西北大学教授,博士生导师,中草药现代化工程研究中心主任,西北大学深圳清华大学研究院共建"创新中药及天然药物研究"联合实验室主任,陕西省中医药管理局“中药复方效应成分分析”重点研究室主任,陕西新药技术开发中心特聘专家,九三学社中央促进技术创新工作委员会委员,九三学社陕西省委常委,陕西省九三学社教育文化专门委员会主任委员,九三学社西北大学
西北大学 2021-01-12
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
【长春广播电视台】高博会:以教育强国赋能东北振兴 以融合创新引智助力长春高质量发展
【长春广播电视台】高博会:以教育强国赋能东北振兴 以融合创新引智助力长春高质量发展
长春广播电视台 2025-05-24
首页 上一页 1 2
  • ...
  • 8 9 10
  • ...
  • 123 124 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1