高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于 CO2 激光器的自校准测量 SF6 浓度的装置及方法
本发明公开了一种基于 CO2 激光器的自校准测量 SF6 浓度的装置及方法,运用波长可调谐 CO2 激光器,在传统光声光谱技术的基础上,检测两个不同波长的光声信号,并通过数据处理计算出 SF6 浓度。该装置成功实现了自校准的 SF6 浓度测量,避免了传统光声光谱技术中运用标准气标定检测系统的过程,从而排除了标定过程中气压、温度、缓冲气等因素对检测结果准确性的影响,从而提高了光声光谱技术的测量精度和实用性。此外该自校准
华中科技大学 2021-04-14
活性分子O3低温两步氧化烟气硫硝一体化脱除方法及装置
本发明涉及烟气污染物治理技术领域,旨在提供一种活性分子O3低温两步氧化烟气硫硝一体化脱除方法及装置。该方法包括:除尘后的烟气由烟道依次进入烟道反应器和湿法洗涤塔;活性分子O3分两个阶段参与反应:一部分由烟道反应器的前端喷入,将烟气中的NO氧化为NO2;剩余的由烟道反应器末端或湿法洗涤塔中段喷入,继续将烟气中的NO2氧化生成NO3或N2O5;硫氧化物与NO3或N2O5在湿法洗涤塔中被浆液一并吸收,实现硫硝污染物的一体化脱除;经处理后的烟气送入烟囱实现排放。本发明降低了脱硫脱硝系统的投资成本、实现了同时脱硫脱硝,系统跟随燃烧负荷调节灵活、工艺简单、脱硝效率90%以上、脱硫效率95%以上,废液可回收氮肥和硫元素,具有广阔的应用前景。
浙江大学 2021-04-13
一种基于双阳极的单室电芬顿矿化抗生素的装置和方法
本发明公开一种基于双阳极的单室电芬顿矿化抗生素的装置和方法,装置中单室内依次设置空气阴极、第一阳极和第二阳极,电解液中含有抗生素,第一阳极包括产电生物膜和原位合成的纳米FeS,第二阳极包括典型抗生素降解中间体的降解生物膜,空气阴极表面涂有氧还原催化剂。本发明以第一阳极驱动Fe(III)/Fe(II)循环,加速•OH生成,同时利用纳米FeS保护细胞免受损伤,从而提升抗生素降解效率并促进中间体生成;以第二阳极促使阳极生物降解与阴极化学氧化偶联,快速矿化中间体并释放电子驱动阴极电芬顿反应,最终实现抗生素的彻底矿化。本发明的装置和方法,可实现抗生素废水的高效绿色低碳处理,在环境保护以及资源利用方面有重要的应用前景。
南京工业大学 2021-01-12
【北京日报社】全国高校仪器设备拥有量每年以约10%的速度增长
1月10日,中国高等教育学会举办中国高等教育博览会服务高校设备更新改造及数字化建设专项工作新闻发布会
云上高博会 2023-01-12
低分子量甲基丙烯酸缩水甘油酯共聚物扩链剂制备技术
扩链剂常用于提高聚酰胺、聚酯等工程塑料的熔体粘度和力学性能,可弥补熔融加工过程中降解导致的性能下降,对工程塑料的回收利用意义重大。含有丙烯酸缩水甘油酯结构单元的共聚物是重要的扩链剂种类,其扩链效果随其分子量的降低而提高。目前市售的丙烯酸缩水甘油酯类扩链剂的重均分子量通常在8.0×103 左右,扩链效果较差。在自由基聚合中,添加链转移剂是有效降低聚合物分子量的方法,但当链转移剂添加量过高时,聚合产率下降明显、生产成本提高。该技术采用溶液聚合法,以甲基丙烯 酸缩水甘油酯、甲基丙烯酸甲酯为主要共聚单体,加入低自由基活性的α-甲基苯乙烯作为第三单体,并添加适量的链转移剂,成功将共聚物的重均分子量降低至 6.0×103 以下,将反应产率保持在 90%以上。所得甲基苯乙烯-甲基丙烯酸甲酯-甲基丙烯酸缩水 甘油酯三元共聚物高反应环氧官能团含量高、分子量低,用于聚 酯、聚酰胺的扩链,具有易分散、反应活性高、扩链效果优异等 特点。由于共聚物中存在甲基苯乙烯结构单元,在加工温度下易发生解聚,分子量降低,可进一步增加扩链效果。 
华南理工大学 2023-05-08
非铅Cs2NaBiX6双钙钛矿纳米晶的高效光致发光动力学
近日,天津大学赵广久教授团队在钙钛矿材料的激发态化学机制研究方面取得突破性进展。相关研究成果发表在《Chemical Engineering Journal》(IF: 10.65)上。该团队首次合成了一种新型非铅双钙钛矿材料,并调控晶格畸变,调控了激发态载流子动力学,从而显著促进了光致发光量子产率的提升,对进一步的材料开发和应用有很强的指导意义。 研究背景 在过去的十年中,关于钙钛矿材料的开发和应用一直在光伏电池和发光领域得到了极大的发展。钙钛矿纳米晶体的与其块状材料相比,具有许多优势,例如钙钛矿纳米晶具有高的光致发光量子产率,颜色可调,同时易于大规模制备柔性器件。因此,卤化钙钛矿纳米晶体已成为研究人员的重要研究对象。 不幸的是,铅的毒性限制了卤化铅的进一步应用钙钛矿纳米晶体。最近报道了一些无铅钙钛矿纳米晶体的合成,但是其很难构造3D的钙钛矿结构,导致性能不佳。铅基钙钛矿的出色光学性能NC由独特的3D钙钛矿结构和ns2电子轨道,使其具有优异的电荷载流子行为。同时,几种双钙钛矿纳米晶体 3D结构取得了一些进展。但是有两个问题仍然存在。一种是开发更新颖的双纳米晶体来配合设备的应用;另一种是使用高精度光谱探索更深层次的激发态动力学。因此,更有效的合成技术改造和更深刻的载流子动力学研究是目前最有效的方法,这可提高无铅钙钛矿纳米晶体的应用前景。 研究基础 在前期的研究中,团队在钙钛矿光电材料设计与机理研究方面取得了一系列的原创性成果。前期我们团队通过离子掺杂诱导相转变,从非活性相转变为活性相,使得发光效率得到大幅度提高 (Angew. Chemie. Int. Ed. 2019, 58, 11642.) ; 在认识到晶型对发光调控的重要影响后,我们进一步地通过离子掺杂控制晶格变形程度进而调控发光峰的宽度,可以在实现高发光效率的同时随意控制发光峰宽度的窄化和拓宽(Chem. Eng. J. 2020, 125367; J. Lumin. 2020, 117045; 2D Mater. 2020, 7, 031008.);最后我们为了开发多手段实现构象调控,我们通过引入不同的左右旋手性基团,从而实现手性的传递和放大(J. Mater. Chem. C. 2020, 8, 5673. Phys. Chem. Chem. Phys. 2020, 22, 17299.)。 研究进展 在这项工作中,赵广久团队创新地开发了高效光致发光钠铋双钙钛矿Cs2NaBiX6(X = Cl,Br)纳米晶体。该团队通过离子掺杂控制晶格畸变,促进自陷态激子的捕获,实现了超快的热载流子弛豫;同时,DFT理论计算分析表明离子掺杂后的晶体的能带结构从间接带隙转变为直接带隙,促进了电子空穴的辐射复合;此外离子掺杂也降低了晶体的体相缺陷,减少了缺陷产生的非辐射复合。以上三者的贡献综合作用从而大幅度促进了光致发光产率的提升,结果离子掺杂后的双钙钛矿Cs2NaBiCl6 NCs可显示约16%的明亮宽带光致发光PLQY,高于迄今为止报告的单组分钙钛矿发光材料(2-10%)。我们的研究为未来的新材料的开发和应用提供了指导。
天津大学 2021-02-01
中国科大发现地球磁尾磁场重联由电子动力学触发的证据
中国科学技术大学中科院近地空间环境重点实验室陆全明、王荣生研究团队,联合美国加州大学洛杉矶分校卢三博士和其他多家欧美科研机构,在地球磁尾磁场重联触发机制方面取得重要进展。他们结合MMS卫星高分辨率观测资料和数值模拟,发现了地球磁尾磁场重联由电子动力学触发的证据。相关结果10月7日在线发表在《Nature Communications》上。 磁场重联是等离子体中的一种基本物理过程。该过程中,磁能会爆发式地释放、转化为等离子体的动能和热能。日地空间环境中许多爆发式能量释放事件,例如:太阳耀斑、日冕物质抛射、磁层亚暴等,都是由磁场重联导致的。地球磁尾发生的磁场重联,其触发时间只有几秒到几十秒,卫星很难直接地探测到触发阶段的粒子动力学行为。因此,磁场重联触发机制的研究主要来源于理论和数值模拟。 依据理论和数值模拟的研究,地球磁尾的磁场重联触发有两种可能的机制。第一种机制是强驱动环境中电子动力学触发磁场重联。第二种是离子动力学驱动磁场重联。关于两种机制的争论持续了长达半个世纪。研究团队结合高时间分辨率卫星数据和数值模拟,发现地球磁尾位型下的磁场重联触发过程起始于小尺度的电子尺度区域的证据,由该区域内电子动力学行为主导,并导致了进一步的爆发式能量释放过程。这为长达半个世纪的地球磁尾磁场重联触发问题的解决提供了新思路。
中国科学技术大学 2021-02-01
非铅Cs2NaBiX6双钙钛矿纳米晶的高效光致发光动力学
项目成果/简介:近日,天津大学赵广久教授团队在钙钛矿材料的激发态化学机制研究方面取得突破性进展。相关研究成果发表在《Chemical Engineering Journal》(IF: 10.65)上。该团队首次合成了一种新型非铅双钙钛矿材料,并调控晶格畸变,调控了激发态载流子动力学,从而显著促进了光致发光量子产率的提升,对进一步的材料开发和应用有很强的指导意义。 研究背景 在过去的十年中,关于钙钛矿材料的开发和应用一直在光伏电池和发光领域得到了极大的发展。钙钛矿纳米晶体的与其块状材料相比,具有许多优势,例如钙钛矿纳米晶具有高的光致发光量子产率,颜色可调,同时易于大规模制备柔性器件。因此,卤化钙钛矿纳米晶体已成为研究人员的重要研究对象。 不幸的是,铅的毒性限制了卤化铅的进一步应用钙钛矿纳米晶体。最近报道了一些无铅钙钛矿纳米晶体的合成,但是其很难构造3D的钙钛矿结构,导致性能不佳。铅基钙钛矿的出色光学性能NC由独特的3D钙钛矿结构和ns2电子轨道,使其具有优异的电荷载流子行为。同时,几种双钙钛矿纳米晶体 3D结构取得了一些进展。但是有两个问题仍然存在。一种是开发更新颖的双纳米晶体来配合设备的应用;另一种是使用高精度光谱探索更深层次的激发态动力学。因此,更有效的合成技术改造和更深刻的载流子动力学研究是目前最有效的方法,这可提高无铅钙钛矿纳米晶体的应用前景。 研究基础 在前期的研究中,团队在钙钛矿光电材料设计与机理研究方面取得了一系列的原创性成果。前期我们团队通过离子掺杂诱导相转变,从非活性相转变为活性相,使得发光效率得到大幅度提高 (Angew. Chemie. Int. Ed. 2019, 58, 11642.) ; 在认识到晶型对发光调控的重要影响后,我们进一步地通过离子掺杂控制晶格变形程度进而调控发光峰的宽度,可以在实现高发光效率的同时随意控制发光峰宽度的窄化和拓宽(Chem. Eng. J. 2020, 125367; J. Lumin. 2020, 117045; 2D Mater. 2020, 7, 031008.);最后我们为了开发多手段实现构象调控,我们通过引入不同的左右旋手性基团,从而实现手性的传递和放大(J. Mater. Chem. C. 2020, 8, 5673. Phys. Chem. Chem. Phys. 2020, 22, 17299.)。 研究进展 在这项工作中,赵广久团队创新地开发了高效光致发光钠铋双钙钛矿Cs2NaBiX6(X = Cl,Br)纳米晶体。该团队通过离子掺杂控制晶格畸变,促进自陷态激子的捕获,实现了超快的热载流子弛豫;同时,DFT理论计算分析表明离子掺杂后的晶体的能带结构从间接带隙转变为直接带隙,促进了电子空穴的辐射复合;此外离子掺杂也降低了晶体的体相缺陷,减少了缺陷产生的非辐射复合。以上三者的贡献综合作用从而大幅度促进了光致发光产率的提升,结果离子掺杂后的双钙钛矿Cs2NaBiCl6 NCs可显示约16%的明亮宽带光致发光PLQY,高于迄今为止报告的单组分钙钛矿发光材料(2-10%)。我们的研究为未来的新材料的开发和应用提供了指导。
天津大学 2021-04-11
中国科大发现地球磁尾磁场重联由电子动力学触发的证据
项目成果/简介:中国科学技术大学中科院近地空间环境重点实验室陆全明、王荣生研究团队,联合美国加州大学洛杉矶分校卢三博士和其他多家欧美科研机构,在地球磁尾磁场重联触发机制方面取得重要进展。他们结合MMS卫星高分辨率观测资料和数值模拟,发现了地球磁尾磁场重联由电子动力学触发的证据。相关结果10月7日在线发表在《Nature Communications》上。 磁场重联是等离子体中的一种基本物理过程。该过程中,磁能会爆发式地释放、转化为等离子体的动能和热能。日地空间环境中许多爆发式能量释放事件,例如:太阳耀斑、日冕物质抛射、磁层亚暴等,都是由磁场重联导致的。地球磁尾发生的磁场重联,其触发时间只有几秒到几十秒,卫星很难直接地探测到触发阶段的粒子动力学行为。因此,磁场重联触发机制的研究主要来源于理论和数值模拟。 依据理论和数值模拟的研究,地球磁尾的磁场重联触发有两种可能的机制。第一种机制是强驱动环境中电子动力学触发磁场重联。第二种是离子动力学驱动磁场重联。关于两种机制的争论持续了长达半个世纪。研究团队结合高时间分辨率卫星数据和数值模拟,发现地球磁尾位型下的磁场重联触发过程起始于小尺度的电子尺度区域的证据,由该区域内电子动力学行为主导,并导致了进一步的爆发式能量释放过程。这为长达半个世纪的地球磁尾磁场重联触发问题的解决提供了新思路。
中国科学技术大学 2021-04-11
一种基于仿射算法和摄动方法的几何模型高频动力学特性预示方法
本发明提供了一种基于仿射摄动的区间不确定性结构能量响应预示方法,建立各子系统的确定性结构的统计能量控制方程,进而引入区间因素,获取区间不确定性结构的区间统计能量控制方程,设定不确定性参数的区间参数,基于仿射摄动算法得到各区间变量的仿射区间表达式,设定各变量的摄动分析表达式,进而基于区间仿射算法的运算法则,推导得到考虑区间不确定性结构的子系统区间能量表达式,给定初始边界参数和求解频率后,计算得到区间不确定性结构的区间能量响应。通过本发明方法使得区间不确定性结构区间能量响应的区间宽度大大缩小、区间能量响应的预示精度大大提高,从而可以更加精确地评估区间不确定性结构的高频动力学特性,具有重要的工程应用价值。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 657 658 659
  • ...
  • 707 708 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1