高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
酶法制备功能糖关键技术
山东是功能糖生产大省,功能糖生产品种齐全,在全国占据领先地位。近几年来,随着淀粉加工企业的增加,淀粉市场竞争激烈,功能糖生产成为淀粉深加工的一个重要方向。酶法制备功能糖,因其节能、降耗、环保等优势,受到企业的青睐。如何获取高效酶制剂,降低酶制备成本,增强酶制备功能糖的产品安全性成为行业的竞争热点。 齐鲁工业大学王瑞明教授团队,经过多年探索,形成了完整的功能糖酶制剂安全表达技术体系,多数成果达到国际先进、国际领先水平。酶法制备海藻糖关键技术及其产业化,2016年获山东省技术发明一等奖。该技术在国家自然基金、山东省高新技术自主创新工程专项等项目资助下,首次利用结构生物学、生物信息学及分子生物学技术改造了酶的耐酸性、耐热性和底物转化率;构建了酶的自诱导分泌重组枯草芽孢杆菌表达体系;研发了多柱循环模拟移动床连续色谱分离海藻糖技术。该技术已在德州汇洋生物科技有限公司、保龄宝生物股份有限公司、山东隆大生物工程有限公司等企业推广应用,项目应用单位近三年累计实现新增销售额8亿元,利润1.8亿元,带来了良好的经济、生态和社会效益。
齐鲁工业大学 2021-04-22
乳液模板法制备功能化聚合物多孔材料
聚合物多孔材料在高技术领域有可观的应用前景,如作为有机合成催化剂载体、生物组织工程支架等。通过高内相乳液模板法(HIPEs)制备的聚合物多孔材料具有孔径和孔容积可调等优点,是极具工业价值的一种技术。但前人的工作都基于乳液经典理论:Bancroft规则即水包油型的乳液只能采用水溶性的乳化剂,油包水型的乳液只能采用油溶性的乳化剂,这严重限制了以高内相乳液为模板制成的聚合物多孔材料的直接应用,迫使其在使用前必须经由复杂的表面功能化;且传统方法在制备稳定高内相乳液时,乳化剂占有机相5-70 wt%,大大增加了高内相乳液制备成本,并造成环境污染。本项目以一步法制备功能化聚合物多孔材料及降低HIPEs制备过程乳化剂用量为技术特点,以仅占有机相0.8 wt% 的水溶性乳化剂为稳定剂,获得稳定的、水相体积分数达96.3vol% 的油包水型高内相乳液,并聚合得到功能化聚苯乙烯-二乙烯基苯基多孔材料。该多孔材料已成功地用作有机合成的微反应器和催化剂载体,避免了高毒性有机锡类催化剂的使用,为聚合物多孔材料在绿色化学工业中直接应用提供新的途径。
华东理工大学 2021-04-11
微纳米颗粒复合制备功能性粉体材料
1 成果简介新材料产业的发展带动了纳米粉体技术的发展,如何合理分散和使用纳米粉体材料已经成为制约该技术应用的瓶颈。因此,各类纳米粉体根据用途而进行二次加工处理,制备用户方便使用的“功能性微纳米复合粉体材料” 也就逐渐形成了市场。 该技术的特点是:借助微米级母粒子与纳米级子粒子的复合,完成对纳米粉体的有序分散和实现纳米颗粒对微米颗粒的包覆;或者是将不规则的颗粒整形处理,从而制备不同类型的功能性复合粉体,满足新材料功能的需要。这一新成果已经实现产业化,解决了许多航空、航天、电子、生物、材料、医药、涂料、冶金等行业对新一代粉体材料的需求。2 应用说明 图 1 生产功能性微纳米复合粉体材料的技术路线 采用我们研制的 PCS-II 型粉体复合机,借助机械冲击的方法对粉体颗粒进行表面处理,有目的地改变其物理化学特征、表面结构和颗粒的形貌特征。 产品的特点是:功能性:根据需要制备具有特定新性能的复合粉体材料,如导电导热粉体、高流动性粉末、球形化石墨粉体、氧化铝弥散铜粉、碳化硅弥散铝粉等;以壳代核:节约贵重原料,如包覆银的聚合物(铜、铝)粉体、包覆铜的铁(铝)粉体等;以微米颗粒为载体分散纳米粉体,如包覆碳纳米管的聚合物(铜)粉体、包覆纳米二氧化硅的橡胶粉体、包覆纳米氧化铝的聚合物粉体等。3 效益分析不同产品的市场背景和成本都有不同,需根据具体情况系统分析。
清华大学 2021-04-13
聚烯烃发泡材料制备关键技术
目前常用的泡沫材料有聚氨酯、聚苯乙烯和聚乙烯三大类,但发泡聚苯乙烯制品难回收,对周围环境造成“白色污染”,聚氨酯泡沫在发泡过程中存在对人体有害的异氰酸酯残留物且发泡材料无法回收利用。发泡聚丙烯以其优良的耐热性、较高的韧性和抗冲击强度以及可回收利用等优点而倍受人们青睐。但由于聚丙烯熔体强度低,发泡过程难以控制,因此很难制备泡孔均匀、形态可控的发泡聚丙烯产品。目前只有少数国家掌握聚丙烯发泡技术,我国还未实现其产业化。本项目首次把脉动剪切力场引入到聚丙烯挤出发泡过程中,建立了聚丙烯挤出发泡成型新方法,制备出了泡孔均匀细腻、高闭孔率的发泡聚丙烯。项目技术路线如下:首先利用普通聚丙烯通过交联接枝制备出适合发泡的高熔体强度聚丙烯,其次在脉动剪切力场作用下高熔体强度聚丙烯挤出发泡制备发泡聚丙烯。本项目的技术特点是在普通聚丙烯发泡成型工艺基础上,创新性的附加脉动剪切力场,使发泡过程更易控制,所制备出的发泡聚丙烯产品泡孔更加均匀细密。发泡聚丙烯可用于包装、汽车、建筑保温、体育防护器材等行业。
华东理工大学 2021-04-11
聚烯烃发泡材料制备关键技术
目前常用的泡沫材料有聚氨酯、聚苯乙烯和聚乙烯三大类,但发泡聚苯乙烯制品难回收,对周围环境造成“白色污染”,聚氨酯泡沫在发泡过程中存在对人体有害的异氰酸酯残留物且发泡材料无法回收利用。发泡聚丙烯以其优良的耐热性、较高的韧性和抗冲击强度以及可回收利用等优点而倍受人们青睐。但由于聚丙烯熔体强度低,发泡过程难以控制,因此很难制备泡孔均匀、形态可控的发泡聚丙烯产品。目前只有少数国家掌握聚丙烯发泡技术,我国还未实现其产业化。 本项目首次把脉动剪切力场引入到聚丙烯挤出发泡过程中,建立了聚丙烯挤出发泡成型新方法,制备出了泡孔均匀细腻、高闭孔率的发泡聚丙烯。项目技术路线如下:首先利用普通聚丙烯通过交联接枝制备出适合发泡的高熔体强度聚丙烯,其次在脉动剪切力场作用下高熔体强度聚丙烯挤出发泡制备发泡聚丙烯。本项目的技术特点是在普通聚丙烯发泡成型工艺基础上,创新性的附加脉动剪切力场,使发泡过程更易控制,所制备出的发泡聚丙烯产品泡孔更加均匀细密。发泡聚丙烯可用于包装、汽车、建筑保温、体育防护器材等行业。
华东理工大学 2021-02-01
黑磷-碳布复合材料制备技术
黑磷是一种新型的二维材料,由于其较宽的可调控直接带隙、高载流子迁移率和优异的各向异性光电性质,在电子学、光电子学、生物医药、电化学和储能等领域展现了巨大的应用潜力,成为“后石墨烯时代”最受瞩目的二维材料之一。碳布(石墨化碳纤维布)是一种拥有独特功能性质的、可用于支撑功能型材料的三维空间构型的材料。目前,碳布主要用作电沉积的基底材料,以与其它功能材料复合形成新的复合材料,所得的复合材料在电化学和储能方面有着广泛的应用前景。我们发明了一种黑磷-碳布复合新材料,制备方法简单、温和且高效,所制得的黑磷-碳布复合材料表现出优异的电化学性能,特别是在电化学析氧反应中表现优异,能为电化学反应分解水提供新的材料选择。 本技术以单质锡、碘、磷以及碳布作为原料,制备了一种新型的黑磷-碳布复合材料。所得的黑磷-碳布复合材料表现出优异的电化学性能,特别是在电化学析氧反应中表现优异,能为电化学反应分解水提供新的催化剂选择。
清华大学 2021-04-11
镧钼热阴极材料及制备技术
北京工业大学 2021-04-14
高性能压电材料制备技术及其应用
内容介绍: 本项目在研究压电材料各向异性和微结构相图基础上,针对钙钛矿结 构压电陶瓷和有机压电聚合物,釆用独特工艺,制备了高性能低成本压 电陶瓷,实现了新型陶瓷成分设计、微结构表征和性能优化;结合第一 性原理密度泛函方法,建立了高性能有机压电聚合物的组织设计、结构 调控、性能分析的理论和准则。
西北工业大学 2021-04-14
低烟尘镁合金焊接材料制备技术
由于镁合金熔沸点低,在焊接过程中存在严重的烧损问题,既降低了焊接接头强度,又污染了环境,因此迫切需要开发出低烟尘镁合金焊接材料。大连理工大学通过对镁合金焊接材料成分、组织性能、成形工艺及其塑性变形机理的研究,开发出具有自主知识产权的系列低烟尘镁合金焊接材料热挤压-拉拔制备技术。该技术充分利用了合金化设计,使镁合金挥发烧损减少30%以上,同时解决了镁合金焊接材料制备过程中的温度及速度匹配等一系列问题,实现了不同直径镁合金焊接材料的制备。镁合金焊接材料热挤压-热拉拔制备技术结
大连理工大学 2021-04-14
高性能电接触材料及制备技术
(1)高强度Cu-Ni-Si系铜合金项目开发的Cu-Ni-Si系铜合金带材最终性能可以达到指标:导电率55-59%IACS,强度σb=551-621MPa,显微硬度153-184HV,延伸率δ≥8%。其强度水平为目前引线框架材料中最高的。 (2)高强高导的Cu-Cr-Zr合金系。在国家自然科学基金的支持下,开展了对Cu-Cr-Zr-Mg和Cu-Cr-Zr合金组织转变规律的研究,首次发现Cu-Cr-Zr-Mg合金在470℃时效形成了具有Fm3m点群的超点阵CrCu2(ZrMg);同时存在体心的Cr相和面心的Cu4Zr相。高温550℃时效析出相完全转变为Cr和Cu4Zr。Cu-Cr-Zr合金在时效初期形成Cu5Zr相,时效峰值状态析出相为Cu5Zr相和体心立方的Cr,且析出相与基体保持着共格关系。所获带材具有高的硬度、强度及导电率,分别可达190HV、600MPa及84%IACS,而带材的延伸率和软化温度分别可达9.4%及578℃,满足了高强度和高导电引线框架铜合金的性能,为工业化生产提供了重要依据。
上海理工大学 2021-01-12
首页 上一页 1 2 3 4 5 6
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1