高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
面向现代通信和导航领域多应用兼容天线设计技术
综观5G、智能化电子设备、导航定位、柔性可穿戴、RFID、物联网、覆盖系统、通信系统等领域,都需要不同类型的高性能换能器件─天线。对于不同的应用体系、不同的频段,天线具有不同的形貌及技术特征。随着以上多种应用日益紧密地融入人们的生活之中,多功能调控管理一体化技术研究的深入,对于这个基本器件的需求在数量上和质量上都有着持续不断增长的需求。团队具有从设计理念到器件材质选取/研发系列自主知识产权国家发明专利100多项,具有按合作方需求完成多种交叉应用的按需新产品研发天线及相关产品能力,兼顾系统EMC集成化的设计,完成一体化智能化的高端装备制作。 天线是应用面极为广泛、技术含量极高的产品,制作各类天线的材料小型化后用量有限,本身价格一般不超过成品售价十分之一,既可以通过购置知名品牌的基材满足常规需求,也可以通过本团队联合的研究团队按需开发特种基材,获取更高的天线特性。从投资的角度,天线批量制作工艺要求并不复杂,采用常规具有一定精度的机械加工设备或者高稳定度的PCB制版设备就可以完成平面小型化天线,设备寿命较长,在高科技设计技术的保障下操作调控也很方便。扣除产品的后期包装和推广成本,利润极高,需求量大,保守估计各种类别的天线年产值都会在数千万以上,前端创新的可以有数亿,属于低投入高回报的产业。 项目投资额视合作关系而定,一般前期投入每个特需专项前期 100~150万人民币,后期再追加及提成(不包括厂房等投入)。
厦门大学 2021-04-11
用于卫星导航系统的射频信号质量评估技术
已有样品/n该项目提供了一种用于卫星导航系统的射频信号质量评估方法。该项目结合卫星导航信号的特点提出了一套较完善的评估指标体系,并给出了包括信号采样、滤波、数字下变频、同步、理想基带信号复现、信号质量指标提取等关键步骤的具体实现方法。与此前的其它方法相比,该项目的应用效果有三方面的显著改善:1)消除了模拟通道间的时延不一致性对信号一致性评估精度的不利影响;2)制定的评价指标与信号捕获、跟踪、解调性能直接关联,可定量评
华中科技大学 2021-01-12
电动汽车充电导航及分布式控制
1.痛点问题 电动汽车在未来将大规模接入电网。在居民小区与公共慢充站等场景下,优化已接入电动汽车充电功率可实现削峰填谷、提高新能源渗透率和改善电压水平。由于单辆电动汽车充电功率、电池容量过小,需要在电动汽车调度环节中引入集群代理作为中间商管理大型充电站或者同一供电区内的电动汽车集群,并以此为单位参与电网调度。在获得电网下发的集群调度结果后,集群代理通过优化内部电动汽车的充电功率,使所有电动汽车的总充电功率尽可能逼近理想曲线,从而使各电动汽车以对电网有利的方式充电。目前,该问题多采用集中优化方案,需要各辆电动汽车向集群代理传递自身信息,当集群规模较大时,大量数据的存储和处理将占用较多资源,计算时间也较长,也和电动汽车的自治性不符。但采用分散优化方案时算法设计不当,分散优化算法结果有可能只是次优解甚至不可行。 另一方面,未来公共快充站的普及和车辆充电功率等级的提升将给电网运行带来新的挑战和机遇:一方面,公共充电站快充负荷的天然不确定性叠加上车辆大功率快充模式,使得部分充电站的充电负荷具有功率大、间歇性和波动性强等特点;如果不对这些公共充电站的快充负荷做合理调控,可能导致配网部分电压越限、电能质量恶化、甚至设备过载等问题;另一方面,电动汽车具有空间移动特性,在充电导航下,起到优化电网潮流分布、促进新能源发电消纳、维持配网节点电压水平、实现电网安全经济运行等目标。目前,电动汽车导航多局限于简单的车辆路径规划问题,缺乏对交通-电力信息的综合考虑,无法实现电力-交通融合网络的协同优化,且在导航过程中对用户隐私的保护不足。 2.解决方案 面向已接入充电的车辆,本项目提出一种对集群内多辆电动汽车充电行为进行分布式优化的方法,属于电力系统运行和控制技术领域。该方法采用停车场或者小区侧的控制器作为优化计算中的协调器,为各个汽车上的子控制器提供协调信息,子控制器根据这些协调信息优化自身的充电功率曲线,并将信息反馈回协调器;如此进行迭代计算:首先由各汽车的子控制器初始化一个满足自身充电要求的初始曲线,作为迭代的开始步骤;每一步迭代过后,协调器将会得到各个电动汽车改进后的充电功率,等迭代收敛得到的各个电动汽车的充电功率下发给子控制器。本方法所得到的充电方案将实现对理想曲线的最优逼近。该成果既适应汽车的物理分布特性,同时又有较高的计算效率。 面向未接入充电的车辆,本项目提出了一种基于智能交通系统的电动汽车充电路径规划方法,综合考虑了交通状况和电网状态。该方法基于智能交通系统实现,包含四个模块:电力系统控制中心、智能交通中心、充电站和电动汽车终端。电力系统控制中心根据电网数据计算可用充电容量和充电站充电容量,并将结果传输至充电站。充电站确定其充电计划,估计未来电动汽车的可用充电功率,并将这些数据传输至智能交通中心。在从智能交通中心接收可用充电功率数据和交通数据后,电动汽车终端估计不同站点的总充电时间,包括驾驶时间、等待时间和充电时间。驾驶员可以查看这些结果,并选择导航至与最小总充电时间相对应的充电站。 合作需求 本项目拟应用于新能源汽车充电管理与新能源汽车充电导航场景。针对已接入充电的车辆,以集群形式参与电网调度,收到电网下发的集群优化充电调度指令后,集群代理需优化集群内的电动汽车充电功率以追踪电网指令,从而降低车辆用户的充电费用。针对未接入充电的车辆,为电动汽车车主提供一条最佳充电路径,节约车主的时间,提高车主的出行效率。而且充电站的选取充分考虑了电力系统的运行要求,避免电力拥塞的现象,保障电力系统的安全运行。 本项目希望获得产品化所需资金与试点产地、开发团队等孵化资源支持。有意向与国家电网、南方电网等输配电企业,国网电动、特来电、星星充电等充电设施建设与运营企业,百度地图、高德地图等地理导航企业,售电公司与负荷聚合代理商合作。
清华大学 2022-05-31
用于胶囊内窥镜检测的磁导航式运动控制系统
本发明公开了一种用于胶囊内窥镜检测的磁导航式运动控制系统,可以实现胶囊内窥镜在消化道内的运动控制和位置控制。系统包括受检者支撑部、磁装配体、磁支撑座和伺服控制单元。磁装配体采用永久磁铁和机械运动产生一个准静态磁场,实现对内置入永磁体的胶囊内窥镜的定位和导向。本发明所提出的磁导航式运动控制系统含有 5 个联动轴,通过外部控制磁导航仪系统各个部件的进给速度、转动速度和相对运动速度,可以实现针对胶囊内窥镜在消化道内的运动控制和位置控制。
华中科技大学 2021-04-14
依多训内镜手术培训机器人导航版
依多训内镜手术培训机器人依托云平台,将医学病理,影像数据、手术培训智能分析引擎等绝密数据及算法存储于云端。 打破传统内镜手术培训的模式,为广大用户带来系统化,精确化,数量化的手术仿真培训教学。系统集人机交互人工智能、VR、AR、医疗影像、机械电子等多个当代学科最尖端技术于一体,可广泛用于医疗行业的各个临床手术培训。
深圳智触计算机系统有限公司 2022-06-09
天津市级课程思政优秀案例-Python数据分析与应用 - 奥运奖牌数据分析
本思政案例值巴黎奥运会火热举办之际,以奥运会数据为载体,引导学生运用Python的Pandas库进行数据清洗、筛选与聚合分析,并通过Plotly工具实现数据可视化。案例巧妙融合数据分析技能培养与思政教育,通过剖析我国奥运奖牌数据变化,让学生直观感受国家体育事业的蓬勃发展,深切领悟体育强国战略背后蕴含的国家意志与民族精神。同时,鼓励学生从数据中探寻体育精神内核,内化于心、践之于行,涵养积极人生态度与爱国情怀。此外,案例数据可视化呈现国际竞技格局,助学生理解多元包容、拓宽国际化视野,增强民族自豪感与文化自信,实现知识传授与价值引领的有机统一。
天津市大学软件学院 2025-05-21
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
一种基于门限的低复杂度MPA算法
本发明的目的在于克服现有技术的不足,提供一种基于门限的低复杂度MPA算法, 该算法通过设置置信度门限来及时对可靠的码字进行译码,或对发送概率极低的码字进行 舍弃,从而有效地降低了原始MPA算法的复杂度。
电子科技大学 2021-04-10
一种并行 LLL 高维模糊度降相关算法
本发明公开了一种并行 LLL 高维模糊度降相关算法,首先通过混合利用 Cholesky 下三角 LTL 分解 以及上三角 UTU 分解,提高 LLL 算法针对高维模糊度降相关的计算效率,增强高维模糊度降相关的能 力。其次为了得到降相关能力较强的 Z 变换矩阵,所以在每一次 QR 分解变换过程中,变换系数矩阵要 获取较小的整数值,因此在每次下三角分解前先对模糊度协方差矩阵的行向量按内积大小进行升序排序, 而在上三角分解前先对矩阵的列向量按内积大小进行降序排列,由此求得的 Z 变换降相关性能更佳。最 后把算法正交变换过程中的取整运算移至在求 Z 矩阵时取整,可以避免算法迭代过程中反复取整而引起 的误差累积,解决算法发散的问题,从而进一步提高并行 LLL 算法的计算效率和稳定性。 
武汉大学 2021-04-13
首页 上一页 1 2
  • ...
  • 35 36 37
  • ...
  • 515 516 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1