高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种金-还原氧化石墨烯-泡沫镍复合材料的制备方法
本发明提供了一种金?还原氧化石墨烯?泡沫镍复合材料的制备方法,主要包括以下几个工艺步骤: 1.制备氧化石墨烯,并配置成一定浓度的氧化石墨烯水溶液; 2.将泡沫镍浸渍于配置好的氧化石墨烯水溶液中,待充分浸渍后,将泡沫镍取出烘干,重复多次得到氧化石墨烯?泡沫镍 3.将氧化石墨烯?泡沫镍浸入新配置的抗坏血酸水溶液中,置于水浴锅中60-90℃,保温20-40min,取出漂洗并烘干,得到还原氧化石墨烯?泡沫镍; 4.将还原氧化石墨烯泡沫镍放入氯金酸溶液中,超声条件下,反应1-5min,烘干后即可获得金纳米粒子分布均匀的金?还原氧化石墨烯泡沫镍材料。
东南大学 2021-04-11
一种基于CZT变换和剪除分裂基快速傅里叶变换的三维摄像声纳波束形成方法
本发明公开了一种基于CZT变换和剪除分裂基快速傅里叶变换的三维摄像声纳波束形成方法,包括以下步骤:分别计算每个换能器接收到的声波中,与载波频率fk对应的第k个DFT变换系数;利用所得变换系数,构建矩阵C;对应方位角方向,对矩阵C的每一列,进行一维离散卷积运算,得到P×N的矩阵MD;对应仰视角方向,对矩阵MD的每一行,进行一维离散卷积运算,得到P×Q的矩阵ME;利用矩阵ME,构建矩阵MF;计算矩阵MF中每个元素的模,得到三维摄像声纳波束。本发明在FFT运算过程中识别和去除不必要的运算操作,有效降低了三维摄像声纳波束形成方法所需的运算量。
浙江大学 2021-04-11
奋进新征程 建功新时代·伟大变革 | 人才事业发展这10年:聚天下英才 筑强国之基
党的十八大以来,以习近平同志为核心的党中央立足中华民族伟大复兴战略全局和世界百年未有之大变局,全面深入推进人才强国战略,高瞻远瞩谋划人才事业布局,大刀阔斧改革创新,广开进贤之路、广聚天下英才,推动新时代人才工作取得历史性成就、发生历史性变革。
光明日报 2022-06-15
3-(1-芳基-2-(2-氮杂芳烃)乙基)-4-羟基香豆素及其制备方法
本发明为3-(1-芳基-2-(2-氮杂芳烃)乙基)-4-羟基香豆素及其制备方法,提供的制备方法以具有式II所示4-羟基香豆素、具有式III所示结构的芳香醛和具有式IV结构的2-烷基氮杂芳烃为原料,在有机溶剂中进行反应,得到具有式I所示结构的化合物。本发明采用“一锅法”合成了具有式I所示结构的3-(1-芳基-2-(2-氮杂芳烃)乙基)-4-羟基香豆素,合成方法操作简单,反应产率较高。而且,本发明提供
青岛农业大学 2021-01-12
一种通过C-C双键裂解自由基串联电合成2,5-二取代呋喃的方法
本发明公开了一种通过C‑C双键裂解自由基串联电合成2,5‑二取代呋喃的方法,将烯胺酮、有机电解质、酸性添加剂溶于溶剂中,得到均相溶液;随后将均相溶液加入电化学反应装置中,充分反应,收集得产物,即得。与现有技术相比,本发明合成工艺操作具有成本低、绿色高效、安全无毒,反应条件温和等优势。同时,本发明无需再额外添加其他催化剂和氧化剂,克服了传统体系中反应条件苛刻等问题,高原子和步骤性得实现产物合成,在合成医药产物方面有广泛的应用前景。
南京工业大学 2021-01-12
新型高效MnxV2O5+x基可见光催化剂的催化机理及动态表征
环境污染和能源短缺已成为当今世界面临的最主要危机,人们不断探究治理环境和开发可再生能源的新方法。于1972年,Fujishima和Honda报道采用TiO2光电极和铂电极组成光电化学体系使水分解为氢气和氧气,从而开辟了半导体催化这一新的研究领域。近些年,将有机污染物降解已经成为能源环境科学领域的研究热点。该研究对于治理水污染,保护水环境具有重要的科学意义。 主要通过化学方法可控的调控可见光催化材料纳米晶体的尺寸和形貌,合成具有规则形貌和特定裸露晶面的可见光催化材料(例如纳米棒、纳米带、纳米片、纳米八面体和纳米六面体等),并在此基础上进一步优化能级能带结构,同时探究催化剂不同晶面上光生载流子的分离行为、氧化还原能力以及催化活性的选择性等独特性质,深入结合理论模拟计算,研究不同形貌的催化剂的裸露晶面上光生载流子的行为和表面/界面微观反应机制。为了深入研究太阳能-化学能转化过程中的关键科学问题,构筑一种新型的具有特定结构和功能的MnxV2O5+x(x=1、2或3)基可见光催化材料,在不添加任何贵金属元素的情况下,Mn3V2O8修饰的V2O5/g-C3N4异质结构在可见光照射下表现出明显的光催化活性,比V2O5/g-C3N4异质结构高出近3倍。由于V2O5和g-C3N4之间的Z-方案路径促进了载流子的分离,因此具有优异的可见光催化活性。
淮阴工学院 2021-05-11
喹啉与异喹啉类杂环化合物的邻位芳基衍生物的经济高效合成方法
2-芳基喹啉、1-芳基异喹啉是一系列药物或生物活性化合物的结构,也是重要的有机材料骨架,比如2-苯基喹啉与不同的金属-配体络合会形成不同颜色的发光材料,因而具有良好的市场发展前景。但这些化合物的合成比较困难,大多数采用非常昂贵的2-溴喹啉和1-溴异喹啉与相应的芳香卤化物在昂贵且对环境有害的过渡金属催化下反应合成;或者由2-溴喹啉和1-溴异喹啉类化合物与不同的金属化合物在过渡金属催化下偶联;再或者先把喹啉与异喹啉首先氧化为相应的N-氧化物,然后与芳基格氏试剂反应,最后再脱掉氧得到2-芳基喹啉、1
兰州大学 2021-04-14
砷化镓基超快激光器与高效率轻质砷化镓薄膜三结太阳电池
激光雷达等传感器以及高效率砷化镓太阳能电池是国务院国家制造强国建设战略咨询委员会列出的核心基础元器件,本项目在国务院国资委以及国家级人才计划科研项目支持下,联合国内知名企业进行关键技术攻关,研制出基于砷化镓的超快半导体激光芯片与激光器可适用于激光加工、5G通信、生物医疗等领域,同时研制出的高效率砷化镓薄膜三结电池曾获得世界最高效率,相关产品已处于中试和量产阶段,本项目相关技术和产品曾获得过2018年度上海市科技进步二等奖,2020年中国发明协会发明创新二等奖,2020年中国光学学会光学科技奖一等奖等奖励。本次将展示本项目研制的相关砷化镓基半导体激光器以及高效率柔性轻质砷化镓薄膜三结太阳能电池。
复旦大学 2021-09-18
纳米二氧化硅/硼酚醛树脂纳米复合材料的制备方法
本发明属于无机/有机纳米复合材料技术领域,具体涉及一种纳米 SiO2/硼酚醛树 脂纳米复合材料及其制备方法。本发明采用了溶液共混法和超声波辅助分散法相结合, 确保纳米颗粒在复合材料中得到纳米级分散;纳米 SiO2表面经过处理,使纳米 SiO2与基 体树脂硼酚醛树脂之间形成了良好的界面,可以充分发挥出纳米 SiO2、硼酚醛树脂的优 点。本发明的目的在于通过合理的工艺控制,制备出纳米 SiO2含量不同的硼酚醛树脂纳 米复合材料。利用纳米 SiO2的刚性、耐磨性、热化学稳定性和硼改性酚醛树脂的良好的 力学性能、耐热性和耐烧蚀性等优点,制备出的纳米 SiO2/硼酚醛树脂纳米复合材料可 广泛用于高温制动摩擦材料、耐烧蚀材料、特种结构材料、防热材料等众多领域。 
同济大学 2021-04-11
“超轻质复合材料CNG气瓶技术及生产线”(4~5)万只/年
成果描述:项目于2012年国家立项(教育部)作为创新创业计划,并资助十万元;同年七月荣获大学生科技“挑战杯”四川省大学生创业计划竞赛一等奖;十一月国家科技部组织在上海参加“首届中国创新创业大赛 获得全国百强 ”奖;年底国家知识产权局授予四项专利权。 该项目是四川大学自主开发的具有国际先进水平和我国自主知识产权的环保型高科技节能产品。“超轻质复合材料CNG气瓶技术”研制团队的部分成员是唯一参加建设、生产过几年轻质复合材料CNG气瓶的团队;该项目是针对目前为减少城市污染而大力发展的压缩天然气汽车研制的一种高科技配套关键产品-气瓶,属于高性能复合材料产品。这类气瓶是融各类内衬的密封性和复合材料的可设计性,高强度,轻重量的特点为一体,大幅度减轻了气瓶重量,又保证承压能力以及使用期间的疲劳寿命;国际上只有少数工业发达国家才具有研究开发生产能力。 全塑料复合材料气瓶已经过广泛的设计、试验和现场的使用试验结果也已证实;这种容器设计可以在汽车运行的环境和条件下安全地工作。全塑料复合材料气瓶是安全的,耐疲劳的,其重量轻和价格之间是相匹配的;目前,这类气瓶己得到世界上广泛的承认和接受,在许多领域内市场正在迅速增加,特别是在各类公共汽车上的应用,分外受到人们的重视和欢迎。这类超轻质复合材料气瓶不仅用于燃气汽车的燃料容器,而且还广泛用于消防,医院以及宇航,井下作业人员的呼吸器,今后将逐步全面替代原有的钢质气瓶和复合二代瓶,市场需求量很大,前景广阔。产品具有极高的经济效益和社会效益,是我国未来最具商业价值的项目,也是国际上正在研究和发展的一类重要高技术产品。 项目采用高密度塑料作内胆,并用计算机控制实现自动化生产;配有调整气瓶成型轨迹和控制机械性能的全套计算机辅助设计软件,可生产多种规格与品种的产品;生产效率高,产品质量稳定,技术成熟可靠;该技术是一个综合应用专利技术和专项技术,建成后的装备及生产技术达到或超过国际先进水平。发展燃气汽车的关键设备就是装天然气的气瓶;气瓶的质量直接关系到燃气汽车运行的安全与成本高低。 目前,国内尚无企业涉足,市场无此类超轻质复合材料CNG气瓶销售;而国外这类轻质复合材料CNG气瓶卖价(1~2)万元/只,价格非常昂贵。国内投资一条生产线仅需2400万元专用和辅助设备,厂房3000㎡,产值2.5~4 亿元,利税2~2.6亿元。超轻质复合材料CNG气瓶(CNG4)样品在四川大学产业科研院里展出,欢迎参观咨询;市场前景分析:该产品用于储存天然气、煤气、石油液化气、氧气、氢气等各种气体的储存;广泛用汽车工业、船、潜水、消防、医药、民用、国防、航空、航天等领域,还可出口国外;主要用于汽车工业集团为新生产汽车配备原装气瓶及城市原有公共汽车和出租汽车的气瓶改装。 超轻质复合材料CNG气瓶的性能指标居国际同类产品先进水平,采用高强度高模量纤维;生产成本低,与国外气瓶相比有很强的性能价格比优势,产品的竞争优势明显;产品具有极高的经济效益和社会效益,是我国未来最具商业价值的项目,也是国际上正在研究和发展的一类重要高技术产品。 国际上只有少数发达国家才具有研究开发生产的能力。这类轻质复合材料气瓶不仅用于燃气汽车的燃料储存,而且还广泛用于消防、潜水、医疗、宇航、以及井下作业人员的呼吸器等等,市场应用前景十分广阔。 近年来,随着超轻质复合材料气瓶材料的成本降低,使得超轻质复合材料CNG气瓶在国内外备受青睐,尤其在轿车、大巴和公交车上的应用极具竞争力。 2014年11月我们调研了全国主要汽车制造集团总部,并与他们交流进行市场合作;如郑州宇通集团、第二汽车制造集团、中国重型汽车制造集团、四川客车集团、成都蜀都客车等公司,并与他们进行了交流;通过交流进行市场合作,我们将根据他们生产的汽车空间来设计气瓶的容量和尺寸大小,我们再按这些汽车制造厂的要求进行设计、生产,满足用户的要求;他们都表示产品出来后将优先选用这类气瓶; 我们看到和了解到郑州宇通客车一辆大巴要安装十一个钢瓶,中国重型卡车一辆要安装十二个钢瓶,蜀都客车要安装六个以上二代或钢瓶,二汽集团的50万辆轿车和与重庆长安公司合作生产的50万辆面包车也都要安装CNG气瓶;了解到各种类汽车都是安装的钢瓶或复合二代瓶;船用的气瓶也是安装的钢瓶或复合二代气瓶。 通过全国主要汽车制造集团总部的调查和国家有关统计部门的资料介绍,国内每年需求气瓶量超过三百万支以上;根据国家“一带一路”发展战略,国外沿线六十多个国家的市场需求量将是很大的;可见国内、外市场需求量十分巨大,前景广阔。与同类成果相比的优势分析:超轻质复合材料CNG气瓶与钢制气瓶相比,超轻质复合材料CNG气瓶具有比强度高、重量轻(是钢瓶的1/5)、安全减震性好等优点,这类气瓶综合了复合材料的高比强度、可设计性以及内衬的良好气密性、优良的耐蚀性等诸多优点,使其达到高承压能力、高疲劳寿命、质轻、耐腐等优良性能的完美结合。超轻质复合材料CNG气瓶具有耐高压(25MPa),容积大(50L~400L),重量轻(同容积和同压力下,S玻纤气瓶为钢瓶重量的60%,碳纤气瓶为钢瓶重量的35%,高分子材料纤维气瓶为钢瓶重量的1/5),可有效减少动力损失;耐腐蚀性能好,因气瓶采用塑料内胆,天然气中的硫化氢气体和水分对内胆无腐蚀;安全性能高,因内胆无腐蚀,从根本上消除了气瓶爆炸诱因(硫化氢应力腐蚀);疲劳寿命长,产品经过循环15000次无泄漏,且玻璃钢耐侯性能比钢强,产品设计使用寿命为15年;可设计性强,可根据不同车型生产出不同规格,材质的气瓶,满足不同用户的需要;抗冻及耐瞬时高温烧蚀;防爆性能好,使用安全可靠,危险性小等特点。 该CNG气瓶比强度高,可提高汽车的有效载荷,增加行驶里程。仅这一点就非传统材料的气瓶所能及。 破损安全性好,超轻质复合材料CNG气瓶中有大量的玻璃纤维,每平方厘米上的玻纤多至几万根。从力学观点上看,是典型的静不定系。当超轻质复合材料CNG气瓶万一超载并且少量纤维断裂时,其载荷会迅速重新分配在未破坏的纤维上,这在短期乃至相当一段时间内不致使构件丧失承载能力。如枪击试验,在距气瓶50m 处,分别以7.62mm、12.7mm高射机枪、53式冲锋枪、1.7mm穿甲燃烧弹、30m全爆弹对充满高压气体的复合材料CNG气瓶进行实弹射击。实弹射击时,容器被击中后,瞬间起火,片刻自熄。高压气体从弹孔喷出,引起气瓶弹跳、窜动,甚至飞出几十米外。但子弹孔无扩孔现象,仅比子弹略大,无碎片。复合材料CNG气瓶本身对周围的破坏力仅是瓶体的撞击力,这可通过以合适夹具固定气瓶予以避免。不言而喻,钢气瓶爆破杀伤力就大得多了。 减振性好,超轻质复合材料CNG气瓶中的纤维与基体界面具有吸振能力,故震动阻尼甚高,抗声振疲劳性亦佳。对超轻质复合材料CNG气瓶进行常温爆破、高低温爆破、温度交变试验、疲劳试验、荷载振动试验、荷载坠落、湿强度试验、长期充气储存试验,试验结果与气瓶多年在不同环境下使用的情况是令人满意的。
四川大学 2021-04-10
首页 上一页 1 2
  • ...
  • 137 138 139
  • ...
  • 158 159 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1