高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
现代设施农业智能种植装备产业化
北京工业大学 2021-04-14
柔性装备机器人及其产业化
北京工业大学 2021-04-14
植物营养基质研发与产业化应用
一、项目分类 显著效益成果转化 二、技术分析 针对我国工农业有机废弃物高存量、低利用率对环境造成的巨大压力以及现代农业快速发展对基质产品的大量需求,研发有机废弃物基质化利用的快速发酵技术、工艺流程及其配套装置,显著提高发酵效率和质量,解决产业发展的技术瓶颈;开发园艺植物、水稻系列化营养基质产品,研制成套智能化生产装备,构建产品质量保障体系,实现规模化、产业化和标准化生产,解决产业发展的关键技术;建立园艺植物和水稻工厂化育苗(秧)技术体系,构建多元结合的推广模式,促进营养基质的产业化应用。
南京农业大学 2022-07-25
功能材料环保助剂开发与产业化
功能高分子新型材料与国民经济、国防建设和人民生活密切相关,是我国集 中研究与重点发展的产业之一。树脂型高分子功能新材料的特性主要是依靠助剂包括增塑剂和热稳定剂等体现出来的,其应用领域十分广阔。本项目针对助剂领域全球无毒化的趋势和要求,将化学工程与催化、分离科学原理应用于环保塑料助剂清洁生产技术工程化,建立化工过程中高品质调控技术体系,提出开展环保塑料助剂的催化与合成调控研究的思路,形成了多种环保塑料助剂的清洁生产工艺并成功实现了产业化,可以工业化多品种替代邻苯类增塑剂及重金属热稳定剂,多项技术获得国家发明专利。
江南大学 2021-04-13
全豆豆制品加工及产业化
立足于彻底解决传统豆腐及豆制品生产过程中普遍存在的营养成分流失严 重、环境污染及资源浪费等重大问题,江南大学全豆豆制品研究团队历时五年多 的专项课题攻关,研制成功国内首款全豆豆制品。对比传统加工,全豆制作工艺41 有机地整合目前最先进的湿法超细粉碎技术和项目团队经多年研究自主创新的 缓释复合凝固技术,生产过程中无豆渣和黄浆水排出,在有效避免环境污染和资 源浪费的同时,完整地保留了传统工艺中随豆渣、黄浆水排放而损失的大豆异黄 酮、部分水溶性蛋白质和水不溶性蛋白质、钙镁无机盐以及膳食纤维等大量营养成分。同等条件下豆制品得率显著提高。 技术特点和创新性 1、利用整粒大豆,无营养流失; 2、采用自动化、清洁化生产,口感、风味与传统压榨盐卤豆腐相当,适合 煎、炒、炖、煮等各种烹饪方式,烹调品质好; 3、全豆盐卤充填豆腐对比传统压榨盐卤豆腐的产率有很大的提升; 4、采用先进的湿法超微粉碎技术,无豆渣排出,不经压制工序,无黄浆水 产生,有助于生产企业实现全面清洁化、无污染生产的环境友好型目标; 5、全豆豆腐加工工艺简单易行,凝固过程可控,无需压制,适合自动化生产,生产效率高。
江南大学 2021-04-11
新型抗性淀粉的开发及产业化
以不同来源的淀粉为原料,将物理热处理与化学水解方法相结合,开发出新 型高品质抗性淀粉。其抗性淀粉含量达到 60%以上,并且在经过蒸煮、烘焙等加工处理后,其抗性淀粉含量没有发生变化,因此具有较好的热稳定性。所用原料不含任何化学试剂,绿色、经济、环保。 创新要点 本产品具有抗性淀粉含量高、热稳定性强、天然、绿色等特点。与酶法改性制备抗性淀粉工艺相比,本抗性淀粉生产成本低,且操作简便、安全与化学改性制备抗性淀粉工艺相比,整个工艺经济、环保、不采用任何化学试剂。 
江南大学 2021-04-11
宠物主食的开发及产业化
随着宠物饲养的不断流行,宠物相关及周边产业近年来规模迅速扩大。普通 市售宠物主粮由于营养不够全面,长期食用可能导致犬只毛色干枯以及其他肤质 问题。此专利定位于一款可以改善犬只毛色以及肤质健康的宠物主粮。 生产工艺:挤压膨化工艺,油脂喷涂工艺。
江南大学 2021-04-11
面向 5G 通信基站用氮化镓基射频器件
(一)项目背景 当前以硅、砷化镓为代表的第一和二代半导体接近其物理极限,以氮化镓、碳化硅为代表的第三代半导体是当前国际竞争热点,也是我国发展自主核心半导体产业、实现换道超车的难得机遇。氮化镓(GaN)特别适合制作高频、高效、高温、高压的大功率微波器件,是下一代通信、雷达、制导等电子装备向更大功率、更高频率、更小体积和抗恶劣环境(高温抗辐照)方向发展的关键技术。 目前氮化镓基射频器件已接近于商用,需解决从走出实验室到小量中试的最后“1 公里”,重点攻克其在可靠性工艺和量产稳定性的瓶颈。 以氮化镓、碳化硅为代表的第三代半导体是当前国际竞争热点,也是我国发展自主核心半导体产业、实现换道超车的难得机遇。 半导体作为信息时代的“粮食”,将成为 5G 基建、特高压、城际高铁和城际轨道交通、新能源汽车充电桩、大数据中心、人工智能、工业互联网等“新基建”七大领域发展的支柱性产业。而氮化镓为代表的宽禁带半导体先进电子器件,凭借其高效、高压、高温等优势,将在“新基建”中大放异彩,可以弥补传统半导体器件的技术瓶颈,满足更高性能器件要求。 (二)项目简介 5G 要求更高的数据传输速率,发射机的效率会出现指数级的下降。这种下降可以使用包络跟踪技术来修复,该技术已经在较新的 4G/LTE 基站以及蜂窝电话中采用。基站中的包络跟踪需要高速,高功率和高电压,这些只有使用 GaN 技术才能实现。诸如 GaN 助力运营商和基站 OEM 等实现了 5Gsub-6-GHz 和 mmWave 大规模 MIMO 的目标。 GaN 可以说为 5Gsub-6-GHz 大规模 MIMO 基站应用提供了众多优势:1、在 3.5GHz 及以上频率下表现良好,对比其他产品优势明显。2、GaN 的特性能转化为高输出功率,宽带宽和高效率。采用 DohertyPA 配置的 GaN 在 100W 输出功率下的平均效率达到 50%至 60%,明显降低了发射功耗。3、在高频和宽带宽下的效率意味着大规模 MIMO 系统可以更紧凑。4、可在较高的工作温度下可靠运行,这意味着它可以使用更小的散热器。 根据 Strategy Analytics 的数据,预计 5G 移动连接将从 2019 年的 500 万增长到 2023 年的近 6 亿。所以需求还将不断上涨。 根据Strategy Analytics的数据,预计5G移动连接将从2019年的500万增长到2023年的近6亿。所以需求还将不断上涨。 Efficient Power Conversion 的首席执行官兼联合创始人Alex Lidow 讨论5G时也说道:“基站中的包络跟踪需要高速,高功率和高电压,这些只有使用GaN技术才能实现。根据Yole Development公司发布的2018年度报告数据显示,随着全球整体数据流量的激增,我国5G产业将迎来大规模的需求增长。预计到2022年,我国5G基站规模将达到千亿市场,5G基站数量将达百万个。所以未来氮化镓基射频器件是5G通信基站收发端的核心。 氮化镓基射频器件是华为和中兴发展 5G 通信产业的核心器件,西安电子科技大学氮化镓射频器件研究团队自 2016 年起就与华为西安研究所、中兴西安研究所等国内主流5G通信公司协同攻关开展氮化镓基射频器件的研究,目前承担的流片服务项目合计约 500 万元。 2017 年,西安电子科技大学与西安市高新区、西电电气集团等联合成立“陕西半导体先导技术中心”,中心致力于推动陕西第三代半导体产业发展,促进以氮化镓为代表的射频器件、功率器件等加速产业化,2019 年团队向陕西半导体先导技术中心转让专利 35 项,作价 2000 万元,双方正在联合推进搭建第三代半导体中试平台,平台将会立足西安,服务全国,提升氮化镓基射频器件量产工艺可靠性,实现相关技术成果转化。 (三)关键技术 本项目由西安电子科技大学作为技术攻关的主要单位,制定技术路线,保障国家重大科技专项“高效 GaN 微波功率器件及可靠性研究”和“5G 移动通信 GaN 芯片可靠性机理研究”研究,与华为和中兴联合开展工程合作项目实施,加快解决器件工艺可靠性工程问题,重点开展氮化镓微波功率与太赫兹器件工程技术研究,突破高性能低缺陷外延材料生长、高效率高可靠氮化镓微波功率器件工艺技术等关键瓶颈问题,协助规模量产高效率 S-Ku 波段典型氮化镓功率器件和模块、5G 基站核心射频模块。
西安电子科技大学 2023-07-12
高性能n-型有机半导体
在梯形双噻吩酰亚胺小分子的基础上,设计并成功合成了一系列具有半梯形结构的全受体类型均聚物PBTIn(n = 1-5),并深入研究了这些材料的构性关系。实验表明,均聚物的聚合方法选择至关重要,通过Stille和Yamamoto偶联方法对比发现,Stille聚合能够得到高分子量、低缺陷态、高性能的高分子半导体;采用全受体结构能够有效拉低前沿轨道能级,基于这些均聚物材料的有机薄膜晶体管都表现出良好的单极性n-型性能,晶体管器件的关电流仅为10 −9 -10 −10 A,电流开关比高达10 6 ;晶体管迁移率性能与构建单元长度反向关联,PBTI1的最高电子迁移率为3.71 cm 2  V -1  s -1 ,该迁移率是全受体均聚物材料中的最高纪录,比PBTI5的电子迁移率高出两个数量级。 通过深入表征发现,这一系列全受体类型均聚物表现出来的晶体管迁移率趋势与其半导体薄膜结构有序度直接相关。拉曼光谱表明,梯形构建单元共轭长度的增加带来较大的单体间扭转角,影响聚合物骨架的平面性。同步辐射X射线衍射表明,梯形构建单元的增长使得聚合物薄膜中π-π堆积方向的结晶性降低,不利于电子的分子间传输。这些结果表示,较长的单体结构会对聚合物薄膜形貌和载流子传输造成负面影响,因此发展更长的梯形构建单元对全受体类型均聚物迁移率的提升不会带来帮助。该研究表明全受体结构是实现高性能单极性n-型聚合物材料的有效途径,同时为n-型梯形小分子和聚合物的结构设计和发展提供重要参考依据。
南方科技大学 2021-04-13
高压大功率半导体器件IGCT
1. 痛点问题 功率半导体是支撑能源领域发展的核心部件。为实现3060双碳目标,我国正在超常规推动新能源发电、大容量输配电和电气化交通等领域,对电压等级4.5kV以上的功率器件需求急速增长。提高器件电压和容量可以减少器件串并联数量、缩减装备体积和成本,是解决城市用地紧张、降低海上风电平台建设成本的关键。然而,受工作机理和制备工艺限制,IGBT器件最大功率等级为4.5kV/3kA和6.5kV/0.75kA,已接近瓶颈,无法满足能源发展需求。因此,亟需更高电压、更大容量、更高可靠性和更低制造成本的功率半导体器件解决方案。 2020年,中国功率半导体市场规模达2000亿元,但90%以上依赖进口,尤其是4.5kV以上器件,近乎全部进口。亟需寻求自主可控的功率半导体器件国产替代方案。 2. 解决方案 本技术面向新能源发电和输配电领域大容量、高可靠的需求,提出了自主化IGCT器件(集成门极换流晶闸管)的设计、制备和驱动控制方案,可以提高阻断电压和关断电流能力、降低器件运行损耗,且可以结合应用工况开展定制优化,如改善器件防爆特性、解决高压装置中的驱动供电问题等,从而实现大容量、高可靠、低成本、高效率的能量管理和功率变换。 目前团队已研制出4.5kV/5kA和6.5kV/4kA的IGCT器件,功率等级全面覆盖IGBT,且具有向更大容量发展的潜力。与IGBT、MOSFET等晶体管器件相比,本技术提出的IGCT具有通态损耗低、耐受电压高、可靠性高、抗干扰能力强等突出优势,符合能源发展趋势,且制造工艺沿用基本沿用传统的晶闸管路线,制造成本低,国内工艺基础好。
清华大学 2021-10-26
首页 上一页 1 2 3 4 5 6
  • ...
  • 219 220 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1