高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
拓扑半金属中Weyl费米子湮灭
物理学研究的前沿之一是在凝聚态体系中寻找Dirac方程所描述的一些基本粒子。Dirac方程是具有狭义相对论协变性的波动方程,最早由英国物理学家Paul M. Dirac 于1928年构造,用于描述自旋为1/2的费米子,典型代表如电子。Dirac方程成功地预言了正电子的存在, 并于1932年被实验证实。Dirac方程有不同的等价表示,比如Dirac、Majorana和Weyl表示等,其对应的准粒子可以分别在不同的凝聚态体系中被实现,如石墨烯 (2010诺贝尔物理奖) 、拓扑绝缘体表面可以存在二维无质量的Dirac费米子和非常规超导体的边界可能存在Majorana费米子等。特别是,Dirac方程的三维无质量极限,对应Weyl费米子,可以在最新发现的拓扑半金属中被实现。 通过系统的计算和数据分析,证明了这个反常信号与Weyl费米子在强磁场下最低朗道能带打开能隙有关。在凝聚态物理中,能谱打开能隙和狄拉克型方程描述的准粒子获得质量是等价的,因而从理论上支持了Weyl费米子湮灭的结论。
南方科技大学 2021-04-13
集成电路板(PCB)微型纳米晶硬质合金钻头
成果描述:针对微钻在使用过程中失效的主要形式和原因,纳米粉在烧结成微钻硬质合金的过程中,出现WC晶粒异常长大,带来性能的明显降低这个问题,研究了添加特种晶粒长大抑制剂的作用和烧结过程优化研究。现已能批量生产Ф3.75标准微钻生产用纳米晶硬质合金棒材,该棒材强度高、硬度高、寿命长、加工性能好、实物质量水平已达同类产品(三菱、东芝、SANDVICK)的先进水平。市场前景分析:硬质合金生产厂家生产纳米硬质合金制品,特别是为国内需求量巨大的高密度印制电路板钻孔用微钻的硬质合金棒材的生产。 2005年消耗量超过1000万只的PCB企业有16家,超过500万只的企业近40家。国内PCB行业2005年消耗微钻总量在4亿只以上,采购资金超过40亿元,微钻使用寿命短和钻机换刀频繁已成为制约整个PCB业提升利润空间和产出效率的瓶颈。市场迫切需要钻孔质量好、使用寿命高、价格适中的PCB微钻产品。目前国内PCB微钻生产用硬质合金棒材每年需求量约200万公斤,一半以上需要进口,需求量巨大。与同类成果相比的优势分析:横断面弯曲强度 /MPa≥3500 硬度/HRA≥92.5 WC晶粒度/μm﹤400nm 金相组织为A02B00C00 密度 /g/cm3≥14.4 国内领先。
四川大学 2021-04-11
高流动性硬质聚氯乙烯材料及其制备方法
本发明公布了一种新型高流动性硬质PVC材料及其制备方法。新型高流动性硬质PVC材料主要成分包括:聚氯乙烯树脂、固体润湿剂、热稳定剂、润滑剂、加工助剂等。新型高流动性硬质PVC材料的制备方法是:首先,将聚氯乙烯树脂、固体润湿剂等组份经高速搅拌混合,然后在双螺杆中挤出,再经造粒成型,即制得目标材料。该材料较原PVC材料具有更低的熔体粘度,更高的流动性能,终产品的力学性能也得到一定的改善,耐热性能得以保持。适宜于生产大型硬质PVC薄壁制品和复杂结构件。同时也能降低PVC的加工温度,缩短加工时间,减低能耗,提高效率。
四川大学 2016-10-25
新型功能材料泡沫铝的制备及性能研究
成果与项目的背景及主要用途: 泡沫铝材是一种新型的功能材料,一般孔隙率在 45%~98%之间,根据孔 隙特点分为开孔与闭孔两种,各国学者早在 40 年代后期就对泡沫金属材料有所 研究,但由于发泡工艺与孔的尺寸很难控制,一直未得到发展,直到 80 年代中 期以后才取得长足进展,开发出了一些有工业价值的生产工艺。目前,日本与德 国在研究、生产与应用泡沫铝材与其他金属泡沫方面居世界领先地位。我国对泡 沫铝材的研究始于 80 年代后期,并取得了一系列的研究成果,但尚未取得突破 性的成就,仍处于起步阶段。 目前,泡沫铝的应用主要有:防火和吸音板、冲击能量吸收材料、建筑板、 半导体气体扩散盘、热交换器、电磁屏蔽物等方面。还应用于冶金、化工、航空 航天、船舶、电子、汽车制造和建筑业等领域,应用范围还在不断扩大。 技术原理与工艺流程简介: 本课题采取的是传统的粉末冶金工艺,把铝粉和造孔剂混合后,压制成预制 件,在热水中将造孔剂溶解掉,然后在真空炉中对预制件进行真空烧结,就得到 了开孔泡沫铝。本试验方法具有以下优点: 1.采用的粉末冶金法可以制备复杂形状的试样,工艺简单容易实现。 2.通过改变工艺参数可以十分容易地控制孔隙率、孔形状及孔的大小。这一 点是其它方法难以做到的。 3.采用的造孔剂为尿素、碳酸氢铵,成本低、形状可控且容易去除。 技术水平及专利与获奖情况: 1. B. Jiang, N.Q. Zhao, C.S. Shi, J.J. Li. Processing of open cell aluminum foams with tailored porous morphology. Scripta Mater 53(2005)781-785.(JCR 工程技术 二 区,2004 年影响因子 2.112,检索号:952BD.同时被 Ei 检索,检索号:05289206237) 2. B. Jiang, N.Q. Zhao, C.S. Shi, X.W. Du, J.J Li, H.C.Man. A novel method for making open cell aluminum foams by powder sintering process. Mater lett 59(2005)3333-3336. (JCR 工程技术 三区,2004 年影响因子 1.186) 113天津大学科技成果选编 3. 姜斌,赵乃勤. 泡沫铝的制备方法及应用进展.金属热处理. 30(2005)36-40. (Ei 检索,检索号:05279197817) 应用前景分析及效益预测: 泡沫铝以其独特的结构而具有许多优异的性能,它不仅具有多孔材料所具有 的轻质特性,还具有金属所具有的优良的力学性能和热、电等物理性能,如渗透、 阻尼、能量吸收、高比表面积、电磁屏蔽等性能。目前,泡沫铝材已经广泛应用 于防火装饰材料、冲击能量吸收材料、热交换器等。由粉末冶金法制备的泡沫铝 工艺简单,成本低廉,可以制备复杂形状的试样。并且通过改变工艺参数可以容 易地控制孔隙率、孔形状及孔的大小,这一点是其它方法难以做到的。所以本方 法有推广应用价值。 应用领域: 泡沫铝的应用主要有:防火和吸音板、冲击能量吸收材料、建筑板、半导体 扩散器盘、热交换器、电磁屏蔽物等方面。还可广泛应用于冶金、化工、航空航 天、船舶、电子、汽车制造和建筑业等领域。 合作方式及条件:合作开发 7、高附加值尖晶石结构铁酸镍/铁酸镁/铁酸锌纳米粉的制备方法 成果(项目)背景、简介及应用领域: 据市场调查公司(富士经济)的调查,纳米技术最先实现商业化的就是材料领 域。纳米材料的世界市场规模到 2015 年预计可达 15000 亿美元,其中电子学领 域最高可达 8000 亿美元;生物技术领域最高可达 3000 亿美元。 纳米材料(又称超细微粒、超细粉末)是处在原子簇和宏观物体交界过渡区域 的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结 构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理 和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用 价值。 尖晶石结构的纳米NiFe2O4作为一种陶瓷材料具有耐高温,高硬度,高强度, 114天津大学科技成果选编 热稳定性好等优点。NiFe2O4 是一种常用的软磁材料,可用作磁头材料、矩磁材 料和微波吸收材料,同时也是制备性能优良的磁电转换复合材料所选用的磁致伸 缩材料,在电子工业上具有极广阔的应用前景。NiFe2O4 还是好的气敏传感材料, 还可以作为锂电池的负极材料。 本技术是一种新颖的纳米化合物的制备方法,该法用水和热能替代传统的草 酸盐、碳酸盐等,与传统共沉淀法制备超微粉相比,由于直接利用了萃取过程中 的物料,降低了粉末的生产成本,并得到了更高纯度的产品,减少了化工原料的 消耗和废水的排放,是制备高品质超细金属氧化物材料经济便捷的绿色化学工艺。 因此,这种结合溶剂萃取制备高级无机材料的新过程是极有发展前途的新方法。 这个过程容易将沉淀粒子的大小控制在纳米范围内,从而克服了直接水解法难以 控制氧化物粒度的弊端。 成果(项目)技术特点(技术优势及主要指标): 本项目采用先进的新方法,合成一些售价在 500~2000 元/公斤的高附加值的 纳米材料,该新技术吸收和继承了液相法的优点并解决了现有合成方法中存在的 一些不足。本技术采用低成本的原料,降低了能耗,且容易产业化。 该新技术为一步合成方法,吸收和继承了液相法的优点并解决了现有合成方 法中存在的如下问题: 1)解决了固相法中产物粒度不易控制、批次间分布不均匀,产品粒径大、 形貌不规则的问题,通过改变工艺条件,可以调节产品的形貌、粒度大小和性能。 2)本技术为一步合成法,反应在短时间内就能完成,且省去了湿化学法后 续工艺的高温煅烧和球磨过程,能直接合成纳米级或微米级的粉体。 3)通过使用有机萃取剂对亚铁离子的萃取提高了产品的纯度,通过萃取剂 的循环,降低了生产成本、减少了化工产品的消耗和排放,属洁净工艺。 4)容易实施对产品的改性。 5)原料来源广泛、制备工艺简单、流程短、耗能低、工艺条件容易掌握、 易于工业化生产。 技术水平及专利与获奖情况: 1) 申请了国家专利,并获授权:尖晶石结构铁酸镍纳米粉的制备方法, 115天津大学科技成果选编 申请号: CN200710057617.7,授权号: CN100506749,授权日: 2009.07.01 尖晶石结构铁酸镁纳米粒子的合成方法, 申请号: CN200710057615.8,授权号: CN101070192B,授权日: 2010.10.13 2) 该技术在实验室已取得决定性突破。通过与企业的合作,进一步研究开 发,可望达到或超过国际同类产品的水平。 3) 该产品已完成放大实验,经中试后,便可进行试生产和生产。 应用前景分析及经济效益预测: 本技术采用的液相合成新方法优势明显,如反应时间短,后处理简单等。而 且样品为纳米级,粒径也较均匀,这对产品的性能有很大影响。此外,有机体系 中还可以直接用纯水做反应物,无废碱排放,有机萃取剂也可以循环使用,属于 绿色工艺,具有重要的实际应用价值。 本技术的原料成本低于其它方法,设备投资小:主要设备是低压反应釜,反 应在中性的介质中和低于 150OC 的温度下进行,因而对设备的耐腐蚀性要求不 高,与目前的固相法相比设备的投资小。 本项目按照年生产能力 100 吨、原料成本 5 万元/吨、产品销售价 20 万元/ 吨计算,毛利收入 1500 万元。 技术转化条件:(包括:原料、设备、厂房面积的要求及投资规模) 1.原料,具体如下: ①镍盐:可以选用工业级的硫酸镍、氯化镍等,通过溶剂萃取提纯 Ni2+。 ②少量氨水和萃取剂(循环使用)。 2.主要设备:低压反应釜、过滤机、干燥箱、粉碎机。 3.生产用房高 4 米,其它为普通房。 4.投资规模:根据投资确定,如本年产总量 500 吨,项目开发总投资约为 2000 万元,利税可达到 3000-4000 万。 合作方式及条件:面议。
天津大学 2021-04-11
一种桥梁拱上填料用泡沫混凝土
本发明涉及一种桥梁拱上填料用泡沫混凝土,所述泡沫混凝土由以下质量份组成,PⅡ52.5或42.5水泥500?600份,锂渣60?240份,水250?300份,发泡剂2?4份,减水剂3?4份,耐碱玻璃纤维10?30份,乳液防水剂2?5份,苯丙乳胶粉12?100份,增稠剂1?3份。待泡沫混凝土浇筑28d后,在泡沫混凝土混凝土表面浸渍硅烷杂化有机硅防水涂料。本发明涉及的桥梁拱上填料用泡沫混凝土与普通泡沫混凝土相比沉降率低、吸水率低、耐久性更好,同时采用锂渣作为填料,解决了废弃锂渣的污染问题。
东南大学 2021-04-11
聚苯乙烯泡沫塑料快速制造系统
聚苯乙烯泡沫塑料是一种价廉、质轻、来源丰富的石油副产品,用途广泛,在包装、装饰及广告领域有着重要的地位。特别是近年来,我国制造业中真空实型消失模铸造技术的飞速发展,需要应用大量的聚苯乙烯消失模;在广告、装饰装潢领域,应用日趋广泛。目前国内外聚苯乙烯材料成形加工技术,有两种方法:对大批量生产,采用一次发泡聚苯乙烯泡沫珠粒,在模具中发泡成型的方法。这种方法除需
西安交通大学 2021-01-12
一种智能化泡沫灭火除尘系统
本项目团队基于泡沫除尘机理和激光散射测尘原理,以粉尘实时监测技术、除尘剂智能配置技术、粉尘自动捕捉技术和系统智能调控技术等为核心,研发了一套智能化泡沫除尘系统。 一、项目进展 创意计划阶段 二、负责人及成员 姓名 学院/所学专业 入学/毕业时间 程丞 安全科学与工程学院/安全工程 2018/2022 刘苏雨 安全科学与工程学院/安全工程 2018/2022 吴逸飞 安全科学与工程学院/消防工程 2018/2022 柴钏润 安全科学与工程学院/安全工程 2019/2023 伍珊 安全科学与工程学院/安全工程 2019/2023 三、指导教师 姓名 学院/所学专业 职务/职称 研究方向 李尧斌 安全科学与工程学院/安全工程 硕导/副教授 煤矿瓦斯防治理论与技术 四、项目简介 本项目团队基于泡沫除尘机理和激光散射测尘原理,以粉尘实时监测技术、除尘剂智能配置技术、粉尘自动捕捉技术和系统智能调控技术等为核心,研发了一套智能化泡沫除尘系统。利用激光测尘仪和在线粒度分析仪对目标空间的粉尘浓度及粒径分布进行实时监测,自动调节水箱、药泵的水、药比例,通过360°可调的泡沫喷射装置和漩涡气泵调节泡沫喷射的方位及压力,进而实现对粉尘的高效、精准捕捉和沉降,除尘效率高达98%,解决了现有除尘装置存在的工作方式耗能、工作效率低等痛点问题,实现了除尘工作的高度无人化、智能化。
安徽理工大学 2022-07-25
耐300℃聚氨酯高强复合隔热板的制备技术
300℃复合隔热板是以聚氨酯(PU)预聚体为基体材料,以中空玻璃微球(HGM)为增强材料,并且添加催化剂等助剂制备的一类PU耐高温隔热复合材料。采用预聚体法分别制备了改变PU交联度和改变填料用量的2组PU/HGM复合材料;通过压缩实验、硬度实验、导热系数和TG-DTA测试,结果表明:当HGM用量在一定质量分数比例时,所制得复合材料压缩强度为37.42MPa,弹性模量为9.96MPa,最大压缩应变5.19%,导热系数为0.1483W/m·K,耐热性(使用温度)为220℃左右,300℃时失重率为80%。材料的综合性能最优。 中空玻璃微球(HGM)主要从粉煤燃烧后的粉煤灰中提取出的和人工合成的,原料来源广泛、价格低廉。HGM 具有诸多优良的性能,包括质轻、导热系数低和抗压能力强等。HGM 在复合材料中广泛应用,不仅可以降低复合材料的密度,而且还可以增加复合材料的力学性能、绝缘性和耐热性等性能。中空玻璃微球(HGM)主要从粉煤燃烧后的粉煤灰中提取出的和人工合成的,原料来源广泛、价格低廉。HGM 具有诸多优良的性能,包括质轻、导热系数低和抗压能力强等。HGM 在复合材料中广泛应用,不仅可以降低复合材料的密度,而且还可以增加复合材料的力学性能、绝缘性和耐热性等性能。通过HGM 对PU泡沫燃烧和力学性能的影响的实验表明,PU泡沫中仅加入HGM 对其氧指数和水平燃烧速度影响不大,但可改变其应力-应变过程:当压力低于临界值时,应变随压力增大而缓慢增加;而当压力超过临界值后,应变随压力增大而迅速增加。通过向硬质PU泡沫塑料中添加石墨和HGM,实验表明:10%(wt,质量分数,下同)的HGM、20%的石墨和70%的硬质泡沫塑料制得的复合材料具有最佳的阻燃性能,且复合材料的极限氧指数达到了30%(体积比),并得到了最大耐压强度和弹性模量。随着HGM 的含量增加,复合材料的拉伸强度增加,而其密度和溶胀比下降。密度为125kg/m3 的HGM 对低密度(54~90kg/m3)硬质泡沫塑料的性能影响,在微球含量为0.5%~5%的范围内确定微球含量对该泡沫塑料热膨胀系数、拉伸和压缩性能的影响。
北京化工大学 2021-02-01
高力学性能形状记忆聚氨酯及智能骨科器械
本聚氨酯(SMPU)材料相较于传统高分子材料(PLA、PCL、PE、PP等)具有高力学性能、可记忆、可降解、低温加工、X射线可透性等特性。应用领域包括:医用和非医用。医用领域可用于骨修复材料,包括:可吸收骨钉、骨棒;脊柱:融合器;填充材料、修复再生材料,覆盖50%以上骨修复材料应用场景。非医用可用于膜材(包装)、模拟手术假体、建筑材料、石膏板假体等。材料性能优势如下: 1.力学性能突出 室温下,模量可达约3500MPa,拉伸强度约40~58MPa,拉伸断裂伸长率约32%。在人体内部生理条件下仍具有580~1200MPa的模量和25~35MPa的拉伸强度,拉伸断裂伸长率超过200%。 2.形状记忆 赋形和回复温度不超过50°C,利于实际应用。形状固定率大于97%,形状回复率大于86%。高形状回复应力:根据硬段的分子结构和硬段含量的不同,形状回复力在0.1~15.0MPa之间可调,且持续时间长,可达280小时以上。 3.能够完全填充 材料在形状回复过程中还能“自适配”不规则的复杂形状,使智能人工骨能够自动填充不规则的骨缺损区域,解决骨缺损修复过程中骨不连的问题。 4.微创植入 与传统的人工骨或其他骨科植入物以开放手术植入人体的实施手段不同,SMP制造的智能人工骨或其他智能骨科植入物(如椎间融合器、骨螺钉、夹骨板等)可以通过微创手术植入人体,然后在体内扩充。这种方法利用SMP及微创手术独特的优势,可以很大程度上减轻病人的痛苦并取得理想的医疗效果。 5.降解速率可调 通过调节硬段的分子结构和含量,可获得降解速率不同的线性SMPUs。     6.低温加工性能优异 挤出和注塑加工温度在110~130°C之间,远低于目前已经商品化的可降解医用高分子材料聚乳酸、聚乙二醇和聚乙醇酸的加工温度,加工难度和加工成本更低。
重庆大学 2021-05-09
新型半水-二水湿法磷酸工艺
成果描述:新型半水-二水湿法磷酸系统(NHDP),可生产40%高浓度磷酸,副产洁净的高强半水石膏,磷矿适用性强,磷收率高。是湿法磷酸生产的重要进展。 其主要工艺性能为大量杂质在反应过程中被分离,生产线将副产洁白的高强度α半水石膏,此石膏可直接用于建筑材料,如做建筑石膏粉,石膏板等。还可以进一步加工成无水石膏晶须,作为纸张,塑料生产的原料。磷酸浓度可达到40%,省去了蒸发浓缩过程。因而从根本上改变了现有湿法磷酸生产过程。同时可以实现伴生稀土原矿的初次富集。已建2万吨P2O5/年生产装置。市场前景分析:目前国内湿法磷酸生产均用普通二水工艺,产能约1000万吨P2O5,磷石膏污染较大,采用新工艺消除磷石膏污染是迫切需要解决的问题与同类成果相比的优势分析:国际领先 □
四川大学 2021-04-10
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 24 25 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1