高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种快充气型微正压保护系统
本发明公开了一种快充气型微正压保护系统,包括:经依次顺 序连接的第一开关阀 2、第一减压阀 3 和第二减压阀 4 分为两条支路, 其中,一条支路经第一流量计 5 与毛细管 6 一端相连,另一支路经第 二流量计 7 与第二开关阀 8 一端相连,毛细管 6 另一端和第二开关阀 8 另一端接过滤器 9 的一端,过滤器 9 另一端与目标腔体 10 一端相连, 目标腔体 10 另一端与节流部件 14 相连,其中,所述目标腔体 10 为密封腔体,其内壁上布置有测量腔内压力的压力传感器 11、用于测量腔 内气体纯度的成分检测仪 12、以及过压保护阀 13。本发明实现了微正 压保护系统初始化过程的快速充气功能,缩短了系统的初始化时间, 同时还保证目标腔体在工作过程中的微正压稳定。 
华中科技大学 2021-04-11
快克智能装备股份有限公司
快克智能装备股份有限公司 2022-11-01
试验用反应釜 快开反应釜
产品详细介绍实验用快开反应釜是我公司根据广大用户的需求,基于普通反应釜而研发出的一款新产品。自推出市场以来深受广大院校及科研部门的喜爱。它不仅改变了传统反应釜的外观而且对操作方式有很大的改进,把笨重的体力劳动实现了机械化,节省了大量时间,大大的提升了工作效率。具体特点如下:1. 釜盖的开启:普通型是用 8-M20螺栓紧固,开启时需要一个一个将螺母扭下,费力费工。而快开釜则是用卡环及相应的螺栓顶压紧固,开启时只要将每个顶丝松几下即可取下卡环,实现釜盖快速开启。2. 釜体的取料:普通型为人工用两手先取下釜盖,再提出釜体并翻转,才能将料倒出。而快开釜使用手摇丝杠,可轻松地将釜盖升起并转位90度,为釜体让开操作空间。然后再用手摇立柱上的蜗杆带动蜗轮使釜体翻转180度倒料。3. 加热炉可随意装上、拆下。上下只需2秒钟。使釜体可以在空气中冷却,缩短了反应过程时间。上述三项工作,普通釜一个工作循环(不计反应时间)至少需要20-30分钟,而且费力,特别是操作者要忍受高温的环境,不小心还可能烫伤。而快开釜每个工作循环只需几分钟,轻松、省力、不热不烫、最大限度的保证安全。实验用快开高压釜综合了国内外高压反应釜的优点,具有外型美观、结构紧凑、操作方便等特点,釜体与釜盖间采用快开式卡环是法兰联接,靠拧紧 8 个螺栓即可将釜盖与釜体密封,上釜及开釜时间短,方便操作; 通过旋转设备上的升降手轮带动丝杆转动将釜盖升起,按下升降方铁的定位销,可将釜盖移至侧面,方便加料、出料及清刷, 支架上设有手柄,扳动手柄可将釜体绕水平线旋转 120 度,便于倒料及清洗釜内残物。实验用快开高压反应釜产品投放市场以来,深受广大科研人员的喜爱,是目前国内外试验室最为理想的高压化学反应试验装置。
威海汇鑫化工机械有限公司 2021-08-23
海水挥发酚和CDOM流动注射化学发光分析仪
01. 成果简介 海洋是人类赖以生存和发展的地球环境的重要组成部分,海洋为我们提供了丰富的矿产资源、食物资源、药物资源以及油气资源等,并且还提供了可以为人类所利用的潮汐能。但是,随着近年来世界经济与工业的快速发展,污染物每年以惊人的数量排放到海水中,经过海洋生物体的富集,一方面对海洋生物造成致命的威胁;另一方面,若通过食物链进入人体,海洋污染的危害会直接作用于我们人类自身。为此,有必要运用科学的手段对海洋环境进行监测,进而调整海洋开发和生态保护的平衡点,以实现对海洋资源的可持续利用和发展。 自2009年开始,团队在多年实验和科研基础上针对测定水体中污染物的化学发光在线分析仪进行开发研制。为了满足海洋污染物现场分析的需要,研制设计船载小型、现场、实时、快速监测海水中多种有机物的化学发光检测专用分析仪。这一研究把当今国际上最先进的分离分析方法应用于海洋监测技术上,该仪器的成功研制有助于推进我国海洋监测的全自动化管理。 目标仪器曾多次参加由国家海洋局北海海洋勘测研究院组织的海上实验,实验数据表明,当腐植酸浓度在0.1-1.0 mg/L范围内时,化学发光强度与腐植酸浓度呈线性关系,所测数据经过中国计量科学研究院和大连国家海洋环境监测中心两家检测机构认证,符合国家标准。 LUM2010 全自动化学发光分析仪 02. 应用前景 可供海洋监测船、沿海各海洋监测站、海洋检测实验室开展海洋监测使用。03. 知识产权 本项成果已采取专有技术进行保护。04. 团队介绍 团队的主要研究领域为微流控芯片质谱联用细胞分析、化学发光/荧光免疫分析、复杂样品前处理分析、空气负离子检测与健康评估等。负责人为教育部长江学者特聘教授、博士生导师,英国皇家化学会会士,承担国家自然科学基金重点项目、仪器专项等科研项目,曾获教育部自然科学奖二等奖、北京市科学技术奖二等奖,任《Journal of Pharmaceutical Analysis》、《Luminescence》、《Trends in Analytical Chemistry》等十余家期刊副主编、特约编辑,中国药学会药物分析专业委员会副主任,中国化学会首届监事会监事。研究成果发表SCI论文近500篇,申请专利逾40项。05. 合作方式 技术许可、合作开发06.联系方式 lijiaoli2016@tsinghua.edu.cn linlab@mail.tsinghua.edu.cn
清华大学 2021-04-13
海水挥发酚和CDOM流动注射化学发光分析仪
1 成果简介海洋是人类赖以生存和发展的地球环境的重要组成部分,海洋为我们提供了丰富的矿产资源、食物资源、药物资源以及油气资源等,并且还提供了可以为人类所利用的潮汐能等。但是,随着近年来世界经济与工业的快速发展,污染物每年以惊人的数量排放到海水中,经过海洋生物体的富集,不但对海洋生物造成致命的威胁,如果再通过食物链进入人体的话,那么海洋污染的危害会直接作用于我们人类自身。海洋的生态环境正遭受到严重的破坏,海水环境,尤其是近海的海水正面临着日益严重的污染。海洋的环境保护,需要我们运用科学的手段对海洋环境进行监测,进而调整海洋开发和生态保护的平衡点,以实现对海洋资源的可持续利用和发展。自 2009 年开始,清华大学在多年实验和科研基础上针对测定水体中污染物的化学发光在线分析仪进行开发研制。为了满足海洋污染物现场分析的需要,研制设计船载小型、现场、实时、快速监测海水中多种有机物的化学发光检测专用分析仪。这一研究把当今国际上最先进的分离分析方法应用于海洋监测技术上,该仪器的成功研制对于推进我国海洋监测的全自动化过程起到重要的作用。研制成功的仪器,可提供各海洋监测船和沿海 各海洋监测站以及常规的海洋检测实验室的海洋监测使用。设计成功的仪器经过简单改装或改进,也可以应用于陆地环境污染水中的有机物测定,在环境监测领域也可发挥其积极的作用。2 应用说明多次参加由国家海洋局北海海洋勘测研究院组织的以向阳红 08 号为载体的胶州湾海上实验与渤海湾海上实验。实验数据表明, 当腐植酸浓度在 0.1-1.0 mg/L 范围内时,化学发光强度与腐植酸浓度是呈线性关系的,回归方程为 I=34.41+1.17x,相关系数 R=0.994; 同时腐植酸浓度在 1.0-8.0 mg/L 范围内,化学发光强度与腐植酸浓度具有线性关系,回归方程为I=35.12+0.53x,相关系数 R 为 0.993。当苯酚浓度在 0.02-0.1 mg/L 范围内时,化学发光强度与苯酚浓度有线性关系,回归方程为 I=33.52+64.48x,相关系数为 0.983;而苯酚浓度在 0.1-0.8mg/L 的范围时,化学发光强度与苯酚浓度也呈线性关系,回归方程为 I=40.25+26.14x,相关系数为 0.992; 当苯酚浓度在 1.0-10.0 mg/L 范围内,化学发光强度与苯酚浓度呈线性关系,线性回归方程为 I=75.83+1.07x,相关系数 R=0.983。 所测数据经过中国计量科学研究院和大连国家海洋环境监测中心两家权威检测机构认证,其性能符合国家标准。3 效益分析该分析仪可实现全自动、在线、现场、实时监测海水中的腐植酸和酚类物质,并通过中心控制系统远程操控的命令进行接受指令进行测定,实现了命令接收、反馈、执行、数据自动处理、存储、发送以及历史数据的自动保存等功能。从而改变了长期以来对环境监测都是采样后拿回到实验室进行测定、在海上作业的时候则需要在船上或者岸上的实验室进行分析测定,这些方法分析周期长,增加了运输成本的缺点,最重要的是若样品在分析测定之前受到污染或自身发生反应变质的话,会严重影响数据的测量结果,很难适应远洋监测的需要。
清华大学 2021-04-13
海水挥发酚和 CDOM 流动注射化学发光分析仪
1 成果简介海洋是人类赖以生存和发展的地球环境的重要组成部分,海洋为我们提供了丰富的矿产资源、食物资源、药物资源以及油气资源等,并且还提供了可以为人类所利用的潮汐能等。但是,随着近年来世界经济与工业的快速发展,污染物每年以惊人的数量排放到海水中,经过海洋生物体的富集,不但对海洋生物造成致命的威胁,如果再通过食物链进入人体的话,那么海洋污染的危害会直接作用于我们人类自身。海洋的生态环境正遭受到严重的破坏,海水环境,尤其是近海的海水正面临着日益严重的污染。海洋的环境保护,需要我们运用科学的手段对海洋环境进行监测,进而调整海洋开发和生态保护的平衡点,以实现对海洋资源的可持续利用和发展。自 2009 年开始,清华大学在多年实验和科研基础上针对测定水体中污染物的化学发光在线分析仪进行开发研制。为了满足海洋污染物现场分析的需要,研制设计船载小型、现场、实时、快速监测海水中多种有机物的化学发光检测专用分析仪。这一研究把当今国际上最先进的分离分析方法应用于海洋监测技术上,该仪器的成功研制对于推进我国海洋监测的全自动化过程起到重要的作用。研制成功的仪器,可提供各海洋监测船和沿海 各海洋监测站以及常规的海洋检测实验室的海洋监测使用。设计成功的仪器经过简单改装或改进,也可以应用于陆地环境污染水中的有机物测定,在环境监测领域也可发挥其积极的作用。2 应用说明多次参加由国家海洋局北海海洋勘测研究院组织的以向阳红 08 号为载体的胶州湾海上实验与渤海湾海上实验。实验数据表明, 当腐植酸浓度在 0.1-1.0 mg/L 范围内时,化学发光强度与腐植酸浓度是呈线性关系的,回归方程为 I=34.41+1.17x,相关系数 R=0.994; 同时腐植酸浓度在 1.0-8.0 mg/L 范围内,化学发光强度与腐植酸浓度具有线性关系,回归方程为I=35.12+0.53x,相关系数 R 为 0.993。当苯酚浓度在 0.02-0.1 mg/L 范围内时,化学发光强度与苯酚浓度有线性关系,回归方程为 I=33.52+64.48x,相关系数为 0.983;而苯酚浓度在 0.1-0.8mg/L 的范围时,化学发光强度与苯酚浓度也呈线性关系,回归方程为 I=40.25+26.14x,相关系数为 0.992; 当苯酚浓度在 1.0-10.0 mg/L 范围内,化学发光强度与苯酚浓度呈线性关系,线性回归方程为 I=75.83+1.07x,相关系数 R=0.983。 所测数据经过中国计量科学研究院和大连国家海洋环境监测中心两家权威检测机构认证,其性能符合国家标准。3 效益分析该分析仪可实现全自动、在线、现场、实时监测海水中的腐植酸和酚类物质,并通过中心控制系统远程操控的命令进行接受指令进行测定,实现了命令接收、反馈、执行、数据自动处理、存储、发送以及历史数据的自动保存等功能。从而改变了长期以来对环境监测都是采样后拿回到实验室进行测定、在海上作业的时候则需要在船上或者岸上的实验室进行分析测定,这些方法分析周期长,增加了运输成本的缺点,最重要的是若样品在分析测定之前受到污染或自身发生反应变质的话,会严重影响数据的测量结果,很难适应远洋监测的需要。
清华大学 2021-04-13
危化品储罐动态展教系统
危化品关键设备动态展教系统利用实物微缩、透视模型制作、多媒体等技术,透明展示泵类、阀类、罐类、塔类、釜类、热交换类等设备,配套多媒体动画,实现直观教学,达到“懂原理、懂结构、懂性能、懂用途;会操作、会保养、会排障”的技能要求。  
中国石油大学(华东) 2021-05-11
小型智能危化品存储柜
解决实验室空间限制,体积较大设备无法摆放的问题。 有些实验室所存储的危化品量相对较少,小型柜解决柜体存量剩余问题,使柜体充分利用。 高校实验室较多,小型柜成本低,应用广泛,可以解决实验室安全智能管理投入过大的问题,减少资金限制。 大多数实验室是分散存在的,小型柜更具有便捷性。 占地面积小,成本低,智能化管理。 尺寸:1214*600*510mm(H/W/D) 适合危化品存储量不多,地方小的实验室。 占地面积小,成本低。智能化管理,人脸识别、自动台账、智能称重、错误告警。有效解决因实验室空间限制,智能危化品柜体积大无法摆放的问题。
江苏三棱智慧物联发展股份有限公司 2021-12-08
浅埋煤层开采顶板涌(突)水危险性分区预测技术
矿井水害的预测防治是煤炭生产中一项重要任务。前人对煤层顶板含水层地下水水害已研究提出了比较可行的预测方法,但对浅埋煤层顶板含水层地下水、采空区积水和地表水多种水源复合水害问题还未研究出合理的预测方法。本成果以陕北侏罗纪煤田典型浅埋煤层矿井为研究区,研究提出了浅埋煤层开采顶板涌(突)水危险性分区预测的技术方法,成果已通过陕西省科技厅组织的鉴定并获陕西煤业化工集团科技进步二等奖。本成果的技术原理是:以矿井水文地质与工程地质条件分析为基础,首先确定矿井煤层顶板的充水条件(充水水源、充水通道、充水强度);其次,进行各充水因素的富水性分区;第三,进行各充水因素的冒裂安全性分区;第四,进行各充水因素的富水性分区和冒裂安全性分区的叠加综合分析,确定矿井不同区域各主采煤层的顶板涌(突)水危险性大小级别,编制矿井涌(突)水危险性分区预测图;第五,针对各充水因素制定相应的防治水措施
西安科技大学 2021-04-11
基于GIS的区域石油化工重大危险源风险管理系统
开发的工程风险分析与应急管理软件系统具有自主知识产权、可替代进口,与国际同类先进软件相比,具有适用范围广、计算模型先进、环境平台适应性强等优势。
南京工业大学 2021-01-12
首页 上一页 1 2
  • ...
  • 12 13 14
  • ...
  • 226 227 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1