高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
残余应力原位高能声束调控系统
残余应力原位高能声束调控系统通过高能声束耦合模式能够实现对任意曲面固体材料内残余应力的进行消减,具有单通道和多通道阵列消减模式,利用高能弹性波的能量改变残余应力势能场,从而达到消减和调控残余应力集中区域的目的。
北京理工大学 2021-02-01
多功能原位微扭转测试仪
一、项目分类 关键核心技术突破 二、成果简介 微米尺度材料、人工肌肉、微型发动机等已经成为机械制造、生物医疗、航空航天等领域必不可少的部分,对它们的扭转力学性能的表征、致动特性的研究、扭矩的计量等是十分必要的,但是如今面临着缺少可靠的微扭转测量设备的重大难题。本技术针对这一难题,开发了多功能原位微扭转测试仪,将测试装置的分辨率提高nNm量级,使其具有高分辨率、高精度、大量程、高稳定性、高可靠性的特点,适宜在不同环境(如温度、湿度等)下使用,为今后微纳米力学领域的实验研究、人工肌肉的制备等方面提供了技术支撑。
华中科技大学 2022-07-27
一种人工上升流羽流捕获及海水采样装置
本实用新型公开了一种人工上升流羽流捕获及海水采样装置,属于海洋监测技术领域;本装置主要两部分组成,第一部分是采水器,采水器上固定一收线器,通过水下电机控制线的收放,可以控制采水器处于不同水平位置,采水器本身具有浮力自调节能力,根据采水器上安装的传感器获得的深度、盐度等数据,可以控制采水器在垂直方向上的位置;第二部分是一个导流网兜,可以捕获羽流流向,保证采水器与羽流流向一致。整个装置各个部分结构清晰,分工明确,可以精确、有效地采集人工上升流羽流区的海水。
浙江大学 2021-04-13
景观水的原位生物修复技术研究
目前水环境污染严重,各地市政景观河道、园林绿地和居住社区的景观水体水质不尽人意,有的出现黑臭,有的富营养化严重。水体修复技术有物理、化学、生物等方法,物理法设备投资和能源消耗大,化学法添加化学品费用高且易造成二次污染,故本项目选用以生物激活剂为主的生物生态原位修复技术。该技术特点是:1、不需建造构筑物,设备投资小;2、生物激活剂投加量少,处理成本和费用低;3、投加的生物激活剂不含外来微生物,经国家授权的医疗卫生单位检测,对动物和鱼类无毒性,不产生二次污染;4、操作和管理简易方便。该项目可应用于住宅小区的人工湖以及其他封闭式或半封闭式景观水体的生物修复,具有良好的推广应用前景。进口药剂已于2004年在杨浦区一社区河道应用,2005~2006年在青浦区两住宅小区试用,2007~2009年在虹口区人工湖和徐汇区市政河道应用并取得较好的修复效果。采样点COD去除率达27.1~64.5%,NH3-N去除率达46.4~81.6%。投加生物激活剂数周后能初见成效,1~2个月后有关水质指标可达到国家景观水要求。生物激活剂可提供水体中好氧微生物种群分解有机物所必要的养分,从而促进水体中“土著”微生物的生长,使其加速分解水中有机污染物。最终提高水中溶解氧和透明度等而改善水体。
华东理工大学 2021-04-11
污泥原位碳源开发关键技术及应用
针对低碳城市污水和生物难降解有机废水除磷脱氮过程中存在碳源竞争、除磷脱氮效率不高、需要外加碳源问题,开发酸碱联合调节、微波组合技术,从污水处理厂内部副产物--污泥(主要有初沉污泥和剩余污泥)中提取生物易利用碳源(特别是乙酸等VFAs(挥发性脂肪酸)),用于增强污水生物除磷脱氮过程,实现污泥原位碳源开发和应用。主要内容:1、揭示先酸后碱、先碱后酸等酸碱联合调节污泥氮磷释放、VFAs形成及脱水性能变化规律,阐明氮磷释放和VFAs形成机理,优化酸碱调节技术,在同一装置中利于污泥中VFAs形成、氮磷释放及污泥脱水性能改善,并应用于实际工程中;2、研究酸碱调节污泥释放的氮磷回收过程;3、研究微波碱解、酸解及联合过氧化氢氧化过程中,剩余污泥中不溶有机物破解、VFAs等形成规律,优化微波组合工艺促进VFAs形成过程。特点:与其他污泥处理的化学、物理和生物法相比,酸碱联合调节方法简单易行,解决了单独调酸或调碱只利于氮、磷释放或VFAs形成而无法实现综合利用的问题,其中先酸(pH 3.0)后碱(pH 10.0)顺次调节方式在调酸时利于氮磷释放,在调碱时利于VFAs形成(每吨污泥有机质可生成VFAs约200公斤),同时污泥脱水性能得到改善;微波与碱解、酸解及过氧化氢相联合,可实现剩余污泥高效快速破解,其中微波/过氧化氢和微波/硫酸依次串联技术,在30min内剩余污泥破解率达80%,乙酸占VFAs含量大于80%。本工艺简单,VFAs产率高,实现了污泥的原位碳源开发、节省了外加碳源和污泥处理处置费用,具有很高的环境和社会效益,具有推广价值。
天津城建大学 2021-04-11
污染场地取样与原位钻注修复装备
中国地质大学(北京) 2021-05-10
一种原位椭圆偏振测量装置
一种原位椭圆偏振测量装置,包括密封盖(100)上设置供偏振光入射与反射的入射孔(106)和反射孔(107),并在外开口处设置密封的入射透光口(108)和反射透光口(109),从而可以保持薄膜反应腔密闭状态下,在整个原子层沉积过程中随时测量薄膜厚度,并且通过光路孔的腔内开口与反应腔的进气口与出气口错开设置,使反应腔的气体流动不易进入光路孔,从而避免在光路孔内壁沉积反应物,无需复杂的定期清洗,整个测量装置结构简单、紧凑,使用方便。
华中科技大学 2021-04-14
原位组装硅酸盐多孔吸声板
本成果——硅酸盐无机多孔吸声板以水泥、工业或建筑废弃料等无机物为主要原料,以水为分散剂,以原位组装技术制备。利用原位组装技术制备的硅酸盐多孔吸声材料吸声降噪效果优异(平均吸声系数>0.8);力学性能好,耐候性好(原料均为无机材料),质量轻(密度小于600kg/m3且可调),生态环保(生产无排放,且无二次污染),成本低(原材料广泛易得,且可利用工业废弃料作为原料),适应性广。
西南交通大学 2016-06-28
一种基于能量捕获的能效公平性优化方法
本发明公开了一种基于能量捕获的能效公平性优化方法,包括: 获取初始数据,包括基站发射功率、路径损耗因子、网络接收阈值、 用户与单层网络的基站之间的距离、网络总带宽和其它层网络的基站 对用户的干扰;在频谱正交分割的情形下,根据路径损耗因子和网络 接收阈值,得到覆盖概率的平均对数;根据覆盖概率的平均对数、网 络总带宽和网络接收阈值,以网络能效值最大为目标建立网络能效模 型,基于网络能效模型得到网络接收阈值的隐函数;将初始数据输入 到网络接收阈值的隐函数,得到最优网络接收阈值和最优网络能效值。 本发明在保证用户服务质量的同时,有效提升整个网络的能量公平性。
华中科技大学 2021-04-11
一种适用于循环肿瘤细胞捕获的微流控芯片
癌症从发生到临床发现往往需要10年的时间,癌症治疗的根本途径是早期发现或者对已转移瘤能有效治疗。循环肿瘤细胞(circulatingtumor cells, CTC)是指从原位瘤脱落下来进入到循环系统尤其是血液中的肿瘤细胞。作为液态活检核心靶标的CTC,不仅可用于癌症转移前的早期筛查,而且在临床肿瘤的分期、预后、特异性药物筛选、疗效检测、治疗和复发监测等方面都具有极其重要的临床应用价值。然而由于CTC在血液中数量极其稀少(约1-100个/mL),其高效高准确捕获一直是科学前沿难题和临床应用的关键障碍。 现有的CTC检测方法仍存在较大的局限,包括检测准确度不足、成本高、效率低、时间长以及检测条件苛刻等。本项目提出的新型微流控芯片设计,将基于流线的降速结构和基于过滤的捕获结构有机整合,实现了CTC特异性的汇聚和保留,同时将部分白细胞和红细胞分流到出口。每经过一个这样的降速结构,CTC就被浓缩一次,白细胞和红细胞被分走一部分。更重要的是,每一个单元液流速度均得到了显著下降(变为原来的1/2)。经过多组这样的降速结构,液流流入捕获结构,此时流速已经非常缓慢,利用CTC和其他血细胞的尺寸和形变差异,通过三棱柱阵列能实现CTC的高效捕获。总体来说,本项目所提出的微流控芯片能在很大流速范围内(5-40 mL/h)都实现高捕获效率(高达94.8%)。此外,芯片上捕获到的CTC的纯度也较高(高达4log白细胞去除率)。临床癌症患者患者双盲测试结果详实准确率达到100%。运用本项目中的微流控芯片,将实验室培养的宫颈癌HeLa细胞掺杂到健康血液中,以模拟癌症患者血液,在很大流速范围内(5-40 mL/h)都能实现高捕获效率(高达94.8%)。同时,为了证明此微流控芯片的普适性,测试了四种实验室细胞系,包括乳腺癌细胞系MCF-7和MDA-MB-231,宫颈癌细胞系HeLa和肺癌细胞系NCl-H226,捕获效率均稳定在91.3%以上。此外,也设置了不同的癌细胞密度以模拟实际的癌症患者血液,捕获效率近似为96.2%。随后,将本项目应用于临床,对11例癌症患者血液中的CTC进行检测,检出率高达100%,CTC个数从6-117个/mL不等,平均值31个/mL,中位数25个/mL。这些研究表明本项目中的微流控芯片能实现癌症患者的早期检测。本项目实现对癌症患者血液中的循环肿瘤细胞的单细胞灵敏度和高特异性的的捕获,由于其成本低,方便快速,效率高,对操作条件不敏感等,因而非常适合大规模应用于临床,实现癌症的早期诊断、实时动态监测和阻断转移等效果。
北京大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 11 12 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1